859 research outputs found

    Information extraction pipelines for knowledge graphs

    Get PDF
    In the last decade, a large number of knowledge graph (KG) completion approaches were proposed. Albeit effective, these efforts are disjoint, and their collective strengths and weaknesses in effective KG completion have not been studied in the literature. We extend Plumber, a framework that brings together the research community’s disjoint efforts on KG completion. We include more components into the architecture of Plumber to comprise 40 reusable components for various KG completion subtasks, such as coreference resolution, entity linking, and relation extraction. Using these components, Plumber dynamically generates suitable knowledge extraction pipelines and offers overall 432 distinct pipelines. We study the optimization problem of choosing optimal pipelines based on input sentences. To do so, we train a transformer-based classification model that extracts contextual embeddings from the input and finds an appropriate pipeline. We study the efficacy of Plumber for extracting the KG triples using standard datasets over three KGs: DBpedia, Wikidata, and Open Research Knowledge Graph. Our results demonstrate the effectiveness of Plumber in dynamically generating KG completion pipelines, outperforming all baselines agnostic of the underlying KG. Furthermore, we provide an analysis of collective failure cases, study the similarities and synergies among integrated components and discuss their limitations

    Information extraction pipelines for knowledge graphs

    Get PDF
    In the last decade, a large number of knowledge graph (KG) completion approaches were proposed. Albeit effective, these efforts are disjoint, and their collective strengths and weaknesses in effective KG completion have not been studied in the literature. We extend Plumber, a framework that brings together the research community’s disjoint efforts on KG completion. We include more components into the architecture of Plumber to comprise 40 reusable components for various KG completion subtasks, such as coreference resolution, entity linking, and relation extraction. Using these components, Plumber dynamically generates suitable knowledge extraction pipelines and offers overall 432 distinct pipelines. We study the optimization problem of choosing optimal pipelines based on input sentences. To do so, we train a transformer-based classification model that extracts contextual embeddings from the input and finds an appropriate pipeline. We study the efficacy of Plumber for extracting the KG triples using standard datasets over three KGs: DBpedia, Wikidata, and Open Research Knowledge Graph. Our results demonstrate the effectiveness of Plumber in dynamically generating KG completion pipelines, outperforming all baselines agnostic of the underlying KG. Furthermore, we provide an analysis of collective failure cases, study the similarities and synergies among integrated components and discuss their limitations

    Semantic Heterogeneity Issues on the Web

    Full text link
    The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction
    • …
    corecore