16 research outputs found

    Security of Wireless Sensor Networks: Current Status and Key Issues

    Get PDF

    WDARS: A Weighted Data Aggregation Routing Strategy with Minimum Link Cost in Event-Driven WSNs

    Get PDF
    Realizing the full potential of wireless sensor networks (WSNs) highlights many design issues, particularly the trade-offs concerning multiple conflicting improvements such as maximizing the route overlapping for efficient data aggregation and minimizing the total link cost. While the issues of data aggregation routing protocols and link cost function in a WSNs have been comprehensively considered in the literature, a trade-off improvement between these two has not yet been addressed. In this paper, a comprehensive weight for trade-off between different objectives has been employed, the so-called weighted data aggregation routing strategy (WDARS) which aims to maximize the overlap routes for efficient data aggregation and link cost issues in cluster-based WSNs simultaneously. The proposed methodology is evaluated for energy consumption, network lifetime, throughput, and packet delivery ratio and compared with the InFRA and DRINA. These protocols are cluster-based routing protocols which only aim to maximize the overlap routes for efficient data aggregation. Analysis and simulation results revealed that the WDARS delivered a longer network lifetime with more proficient and reliable performance over other methods

    WDARS: A Weighted Data Aggregation Routing Strategy with Minimum Link Cost in Event-Driven WSNs

    Get PDF
    Realizing the full potential of wireless sensor networks (WSNs) highlights many design issues, particularly the trade-offs concerning multiple conflicting improvements such as maximizing the route overlapping for efficient data aggregation and minimizing the total link cost. While the issues of data aggregation routing protocols and link cost function in a WSNs have been comprehensively considered in the literature, a trade-off improvement between these two has not yet been addressed. In this paper, a comprehensive weight for trade-off between different objectives has been employed, the so-called weighted data aggregation routing strategy (WDARS) which aims to maximize the overlap routes for efficient data aggregation and link cost issues in cluster-based WSNs simultaneously. The proposed methodology is evaluated for energy consumption, network lifetime, throughput, and packet delivery ratio and compared with the InFRA and DRINA. These protocols are cluster-based routing protocols which only aim to maximize the overlap routes for efficient data aggregation. Analysis and simulation results revealed that the WDARS delivered a longer network lifetime with more proficient and reliable performance over other methods

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Data and resource management in wireless networks via data compression, GPS-free dissemination, and learning

    Get PDF
    “This research proposes several innovative approaches to collect data efficiently from large scale WSNs. First, a Z-compression algorithm has been proposed which exploits the temporal locality of the multi-dimensional sensing data and adapts the Z-order encoding algorithm to map multi-dimensional data to a one-dimensional data stream. The extended version of Z-compression adapts itself to working in low power WSNs running under low power listening (LPL) mode, and comprehensively analyzes its performance compressing both real-world and synthetic datasets. Second, it proposed an efficient geospatial based data collection scheme for IoTs that reduces redundant rebroadcast of up to 95% by only collecting the data of interest. As most of the low-cost wireless sensors won’t be equipped with a GPS module, the virtual coordinates are used to estimate the locations. The proposed work utilizes the anchor-based virtual coordinate system and DV-Hop (Distance vector of hops to anchors) to estimate the relative location of nodes to anchors. Also, it uses circle and hyperbola constraints to encode the position of interest (POI) and any user-defined trajectory into a data request message which allows only the sensors in the POI and routing trajectory to collect and route. It also provides location anonymity by avoiding using and transmitting GPS location information. This has been extended also for heterogeneous WSNs and refined the encoding algorithm by replacing the circle constraints with the ellipse constraints. Last, it proposes a framework that predicts the trajectory of the moving object using a Sequence-to-Sequence learning (Seq2Seq) model and only wakes-up the sensors that fall within the predicted trajectory of the moving object with a specially designed control packet. It reduces the computation time of encoding geospatial trajectory by more than 90% and preserves the location anonymity for the local edge servers”--Abstract, page iv

    Intelligent Security Provisioning and Trust Management for Future Wireless Communications

    Get PDF
    The fifth-generation (5G)-and-beyond networks will provide broadband access to a massive number of heterogeneous devices with complex interconnections to support a wide variety of vertical Internet-of-Things (IoT) applications. Any potential security risk in such complex systems could lead to catastrophic consequences and even system failure of critical infrastructures, particularly for applications relying on tight collaborations among distributed devices and facilities. While security is the cornerstone for such applications, trust among entities and information privacy are becoming increasingly important. To effectively support future IoT systems in vertical industry applications, security, trust and privacy should be dealt with integratively due to their close interactions. However, conventional technologies always treat these aspects separately, leading to tremendous security loopholes and low efficiency. Existing solutions often feature various distinctive weaknesses, including drastically increased latencies, communication and computation overheads, as well as privacy leakage, which are extremely undesirable for delay-sensitive, resource-constrained, and privacy-aware communications. To overcome these issues, this thesis aims at creating new multi-dimensional intelligent security provisioning and trust management approaches by leveraging the most recent advancements in artificial intelligence (AI). The performance of the existing physical-layer authentication could be severely affected by the imperfect estimate and the variation of physical link attributes, especially when only a single attribute is employed. To overcome this challenge, two multi-dimensional adaptive schemes are proposed as intelligent processes to learn and track the all available physical attributes, hence to improve the reliability and robustness of authentication by fusing multiple attributes. To mitigate the effects of false authentication, an adaptive trust management-based soft authentication and progressive authorization scheme is proposed by establishing trust between transceivers. The devices are authorized by their trust values, which are dynamically evaluated in real-time based on the varying attributes, resulting in soft security and progressive authorization. By jointly considering security and privacy-preservation, a distributed accountable recommendation-based access scheme is proposed for blockchain-enabled IoT systems. Authorized devices are introduced as referrers for collaborative authentication, and the anonymous credential algorithm helps to protect privacy. Wrong recommendations will decrease the referrers’ reputations, named as accountability. Finally, to secure resource-constrained communications, a lightweight continuous authentication scheme is developed to identify devices via their pre-arranged pseudo-random access sequences. A device will be authenticated as legitimate if its access sequences are identical to the pre-agreed unique order between the transceiver pair, without incurring long latency and high overhead. Applications enabled by 5G-and-beyond networks are expected to play critical roles in the coming connected society. By exploring new AI techniques, this thesis jointly considers the requirements and challenges of security, trust, and privacy provisioning, and develops multi-dimensional intelligent continuous processes for ever-growing demands of the quality of service in diverse applications. These novel approaches provide highly efficient, reliable, model-independent, situation-aware, and continuous protection for legitimate communications, especially in the complex time-varying environment under unpredictable network dynamics. Furthermore, the proposed soft security enables flexible designs for heterogeneous IoT devices, and the collaborative schemes provide efficient solutions for massively distributed entities, which are of paramount importance to diverse industrial applications due to their ongoing convergence with 5G-and-beyond networks

    Energy aware performance evaluation of WSNs

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. Energy-efficient solutions are required for each aspect of WSN design to deliver the potential advantages of the WSN phenomenon, hence in both existing and future solutions for WSNs, energy efficiency is a grand challenge. The main contribution of this thesis is to present an approach considering the collaborative nature of WSNs and its correlation characteristics, providing a tool which considers issues from physical to application layer together as entities to enable the framework which facilitates the performance evaluation of WSNs. The simulation approach considered provides a clear separation of concerns amongst software architecture of the applications, the hardware configuration and the WSN deployment unlike the existing tools for evaluation. The reuse of models across projects and organizations is also promoted while realistic WSN lifetime estimations and performance evaluations are possible in attempts of improving performance and maximizing the lifetime of the network. In this study, simulations are carried out with careful assumptions for various layers taking into account the real time characteristics of WSN. The sensitivity of WSN systems are mainly due to their fragile nature when energy consumption is considered. The case studies presented demonstrate the importance of various parameters considered in this study. Simulation-based studies are presented, taking into account the realistic settings from each layer of the protocol stack. Physical environment is considered as well. The performance of the layered protocol stack in realistic settings reveals several important interactions between different layers. These interactions are especially important for the design of WSNs in terms of maximizing the lifetime of the network

    Secured information dissemination and misbehavior detection in VANETs

    Get PDF
    In a connected vehicle environment, the vehicles in a region can form a distributed network (Vehicular Ad-hoc Network or VANETs) where they can share traffic-related information such as congestion or no-congestion with other vehicles within its proximity, or with a centralized entity via. the roadside units (RSUs). However, false or fabricated information injected by an attacker (or a malicious vehicle) within the network can disrupt the decision-making process of surrounding vehicles or any traffic-monitoring system. Since in VANETs the size of the distributed network constituting the vehicles can be small, it is not difficult for an attacker to propagate an attack across multiple vehicles within the network. Under such circumstances, it is difficult for any traffic monitoring organization to recognize the traffic scenario of the region of interest (ROI). Furthermore, even if we are able to establish a secured connected vehicle environment, an attacker can leverage the connectivity of individual vehicles to the outside world to detect vulnerabilities, and disrupt the normal functioning of the in-vehicle networks of individual vehicles formed by the different sensors and actuators through remote injection attacks (such as Denial of Service (DoS)). Along this direction, the core contribution of our research is directed towards secured data dissemination, detection of malicious vehicles as well as false and fabricated information within the network. as well as securing the in-vehicle networks through improvisation of the existing arbitration mechanism which otherwise leads to Denial of Service (DoS) attacks (preventing legitimate components from exchanging messages in a timely manner). --Abstract, page iv
    corecore