12,563 research outputs found

    Java instrumentation suite: accurate analysis of Java threaded applications

    Get PDF
    The rapid maturing process of the Java technology is encouraging users the development of portable applications using the Java language. As an important part of the definition of the Java language, the use of threads is becoming commonplace when programming this kind of applications. Understanding and tuning threaded applications requires the use of effective tools for detecting possible performance bottlenecks. Most of the available tools summarize the behavior of the application in a global way offering different metrics that are sufficient to optimize the performance of the application in some cases. However, they do not enable a detailed analysis of the behavior of the application; this requires the use of tools that perform an exhaustive and time-aware tracing at a fine-grain level. This paper presents the Java Instrumentation Suite (JIS), a set of tools designed to instrument Java threaded applications using dynamic code interposition (avoiding the instrumentation and recompilation of the source code and/or the Java Virtual Machine JVM). Our initial implementation targets the JVM version 3.1.1 on top of the SGI Origin2000 parallel platform. The paper describes the design of JIS and highlights some of its main functionalities specifically designed to understand the behavior of Java threaded applications and the JVM itself, and to speed them up.Postprint (author’s final draft

    TaskInsight: Understanding Task Schedules Effects on Memory and Performance

    Get PDF
    Recent scheduling heuristics for task-based applications have managed to improve their by taking into account memory-related properties such as data locality and cache sharing. However, there is still a general lack of tools that can provide insights into why, and where, different schedulers improve memory behavior, and how this is related to the applications' performance. To address this, we present TaskInsight, a technique to characterize the memory behavior of different task schedulers through the analysis of data reuse between tasks. TaskInsight provides high-level, quantitative information that can be correlated with tasks' performance variation over time to understand data reuse through the caches due to scheduling choices. TaskInsight is useful to diagnose and identify which scheduling decisions affected performance, when were they taken, and why the performance changed, both in single and multi-threaded executions. We demonstrate how TaskInsight can diagnose examples where poor scheduling caused over 10% difference in performance for tasks of the same type, due to changes in the tasks' data reuse through the private and shared caches, in single and multi-threaded executions of the same application. This flexible insight is key for optimization in many contexts, including data locality, throughput, memory footprint or even energy efficiency.We thank the reviewers for their feedback. This work was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research project FFL12-0051 and carried out within the Linnaeus Centre of Excellence UPMARC, Uppsala Programming for Multicore Architectures Research Center. This paper was also published with the support of the HiPEAC network that received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 687698.Peer ReviewedPostprint (published version

    Energy Efficiency of Software Transactional Memory in a Heterogeneous Architecture

    Get PDF
    Hardware vendors make an important effort creating low-power CPUs that keep battery duration and durability above acceptable levels. In order to achieve this goal and provide good performance-energy for a wide variety of applications, ARM designed the big.LITTLE architecture. This heterogeneous multi-core architecture features two different types of cores: big cores oriented to performance and little cores, slower and aimed to save energy consumption. As all the cores have access to the same memory, multi-threaded applications must resort to some mutual exclusion mechanism to coordinate the access to shared data by the concurrent threads. Transactional Memory (TM) represents an optimistic approach for shared-memory synchronization. To take full advantage of the features offered by software TM, but also benefit from the characteristics of the heterogeneous big.LITTLE architectures, our focus is to propose TM solutions that take into account the power/performance requirements of the application and what it is offered by the architecture. In order to understand the current state-of-the-art and obtain useful information for future power-aware software TM solutions, we have performed an analysis of a popular TM library running on top of an ARM big.LITTLE processor. Experiments show, in general, better scalability for the LITTLE cores for most of the applications except for one, which requires the computing performance that the big cores offer.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    EffectiveSan: Type and Memory Error Detection using Dynamically Typed C/C++

    Full text link
    Low-level programming languages with weak/static type systems, such as C and C++, are vulnerable to errors relating to the misuse of memory at runtime, such as (sub-)object bounds overflows, (re)use-after-free, and type confusion. Such errors account for many security and other undefined behavior bugs for programs written in these languages. In this paper, we introduce the notion of dynamically typed C/C++, which aims to detect such errors by dynamically checking the "effective type" of each object before use at runtime. We also present an implementation of dynamically typed C/C++ in the form of the Effective Type Sanitizer (EffectiveSan). EffectiveSan enforces type and memory safety using a combination of low-fat pointers, type meta data and type/bounds check instrumentation. We evaluate EffectiveSan against the SPEC2006 benchmark suite and the Firefox web browser, and detect several new type and memory errors. We also show that EffectiveSan achieves high compatibility and reasonable overheads for the given error coverage. Finally, we highlight that EffectiveSan is one of only a few tools that can detect sub-object bounds errors, and uses a novel approach (dynamic type checking) to do so.Comment: To appear in the Proceedings of 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI2018
    • …
    corecore