22,409 research outputs found

    Trace-level reuse

    Get PDF
    Trace-level reuse is based on the observation that some traces (dynamic sequences of instructions) are frequently repeated during the execution of a program, and in many cases, the instructions that make up such traces have the same source operand values. The execution of such traces will obviously produce the same outcome and thus, their execution can be skipped if the processor records the outcome of previous executions. This paper presents an analysis of the performance potential of trace-level reuse and discusses a preliminary realistic implementation. Like instruction-level reuse, trace-level reuse can improve performance by decreasing resource contention and the latency of some instructions. However, we show that trace-level reuse is more effective than instruction-level reuse because the former can avoid fetching the instructions of reused traces. This has two important benefits: it reduces the fetch bandwidth requirements, and it increases the effective instruction window size since these instructions do not occupy window entries. Moreover, trace-level reuse can compute all at once the result of a chain of dependent instructions, which may allow the processor to avoid the serialization caused by data dependences and thus, to potentially exceed the dataflow limit.Peer ReviewedPostprint (published version

    Static locality analysis for cache management

    Get PDF
    Most memory references in numerical codes correspond to array references whose indices are affine functions of surrounding loop indices. These array references follow a regular predictable memory pattern that can be analysed at compile time. This analysis can provide valuable information like the locality exhibited by the program, which can be used to implement more intelligent caching strategy. In this paper we propose a static locality analysis oriented to the management of data caches. We show that previous proposals on locality analysis are not appropriate when the proposals have a high conflict miss ratio. This paper examines those proposals by introducing a compile-time interference analysis that significantly improve the performance of them. We first show how this analysis can be used to characterize the dynamic locality properties of numerical codes. This evaluation show for instance that a large percentage of references exhibit any type of locality. This motivates the use of a dual data cache, which has a module specialized to exploit temporal locality, and a selective cache respectively. Then, the performance provided by these two cache organizations is evaluated. In both organizations, the static locality analysis is responsible for tagging each memory instruction accordingly to the particular type(s) of locality that it exhibits.Peer ReviewedPostprint (published version

    Trace-level speculative multithreaded architecture

    Get PDF
    This paper presents a novel microarchitecture to exploit trace-level speculation by means of two threads working cooperatively in a speculative and non-speculative way respectively. The architecture presents two main benefits: (a) no significant penalties are introduced in the presence of a misspeculation and (b) any type of trace predictor can work together with this proposal. In this way, aggressive trace predictors can be incorporated since misspeculations do not introduce significant penalties. We describe in detail TSMA (trace-level speculative multithreaded architecture) and present initial results to show the benefits of this proposal. We show how simple trace predictors achieve significant speed-up in the majority of cases. Results of a simple trace speculation mechanism show an average speed-up of 16%.Peer ReviewedPostprint (published version

    Compiler analysis for trace-level speculative multithreaded architectures

    Get PDF
    Trace-level speculative multithreaded processors exploit trace-level speculation by means of two threads working cooperatively. One thread, called the speculative thread, executes instructions ahead of the other by speculating on the result of several traces. The other thread executes speculated traces and verifies the speculation made by the first thread. In this paper, we propose a static program analysis for identifying candidate traces to be speculated. This approach identifies large regions of code whose live-output values may be successfully predicted. We present several heuristics to determine the best opportunities for dynamic speculation, based on compiler analysis and program profiling information. Simulation results show that the proposed trace recognition techniques achieve on average a speed-up close to 38% for a collection of SPEC2000 benchmarks.Peer ReviewedPostprint (published version
    • …
    corecore