732 research outputs found

    Dynamic Memory Optimization using Pool Allocation and Prefetching

    Get PDF
    Heap memory allocation plays an important role in modern applications. Conventional heap allocators, however, generally ignore the underlying memory hierarchy of the system, favoring instead a low runtime overhead and fast response times. Unfortunately, with little concern for the memory hierarchy, the data layout may exhibit poor spatial locality, and degrade cache performance. In this paper, we describe a dynamic heap allocation scheme called pool allocation. The strategy aims to improve cache performance by inspecting memory allocation requests, and allocating memory from appropriate heap pools as dictated by the requesting context. The advantages are two fold. First, by pooling together data with a common context, we expect to improve spatial locality, as data fetched to the caches will contain fewer items from different contexts. If the allocation patterns are closely matched to the traversal patterns, the end result is faster memory performance. Second, by pooling heap objects, we expect access patterns to exhibit more regularity, thus creating more opportunities for data prefetching. Our dynamic memory optimizer exploits the increased regularity to insert prefetch instructions at runtime. The optimizations are implemented in DynamoRIO, a dynamic optimization framework. We evaluate the work using various benchmarks, and measure a 17% speedup over gcc -O3 on an Athlon MP, and a 13% speedup on a Pentium 4.Singapore-MIT Alliance (SMA

    Ubiquitous Memory Introspection (Preliminary Manuscript)

    Get PDF
    Modern memory systems play a critical role in the performance ofapplications, but a detailed understanding of the application behaviorin the memory system is not trivial to attain. It requires timeconsuming simulations of the memory hierarchy using long traces, andoften using detailed modeling. It is increasingly possible to accesshardware performance counters to measure events in the memory system,but the measurements remain coarse grained, better suited forperformance summaries than providing instruction level feedback. Theavailability of a low cost, online, and accurate methodology forderiving fine-grained memory behavior profiles can prove extremelyuseful for runtime analysis and optimization of programs.This paper presents a new methodology for Ubiquitous MemoryIntrospection (UMI). It is an online and lightweight mini-simulationmethodology that focuses on simulating short memory access tracesrecorded from frequently executed code regions. The simulations arefast and can provide profiling results at varying granularities, downto that of a single instruction or address. UMI naturally complementsruntime optimizations techniques and enables new opportunities formemory specific optimizations.In this paper, we present a prototype implementation of a runtimesystem implementing UMI. The prototype is readily deployed oncommodity processors, requires no user intervention, and can operatewith stripped binaries and legacy software. The prototype operateswith an average runtime overhead of 20% but this slowdown is only 6%slower than a state of the art binary instrumentation tool. We used32 benchmarks, including the full suite of SPEC2000 benchmarks, forour evaluation. We show that the mini-simulation results accuratelyreflect the cache performance of two existing memory systems, anIntel Pentium~4 and an AMD Athlon MP (K7) processor. We alsodemonstrate that low level profiling information from the onlinesimulation can serve to identify high-miss rate load instructions with a77% rate of accuracy compared to full offline simulations thatrequired days to complete. The online profiling results are used atruntime to implement a simple software prefetching strategy thatachieves a speedup greater than 60% in the best case

    Energy-Efficient Acceleration of Asynchronous Programs.

    Full text link
    Asynchronous or event-driven programming has become the dominant programming model in the last few years. In this model, computations are posted as events to an event queue from where they get processed asynchronously by the application. A huge fraction of computing systems built today use asynchronous programming. All the Web 2.0 JavaScript applications (e.g., Gmail, Facebook) use asynchronous programming. There are now more than two million mobile applications available between the Apple App Store and Google Play, which are all written using asynchronous programming. Distributed servers (e.g., Twitter, LinkedIn, PayPal) built using actor-based languages (e.g., Scala) and platforms such as node.js rely on asynchronous events for scalable communication. Internet-of-Things (IoT), embedded systems, sensor networks, desktop GUI applications, etc., all rely on the asynchronous programming model. Despite the ubiquity of asynchronous programs, their unique execution characteristics have been largely ignored by conventional processor architectures, which have remained heavily optimized for synchronous programs. Asynchronous programs are characterized by short events executing varied tasks. This results in a large instruction footprint with little cache locality, severely degrading cache performance. Also, event execution has few repeatable patterns causing poor branch prediction. This thesis proposes novel processor optimizations exploiting the unique execution characteristics of asynchronous programs for performance optimization and energy-efficiency. These optimizations are designed to make the underlying hardware aware of discrete events and thereafter, exploit the latent Event-Level Parallelism present in these applications. Through speculative pre-execution of future events, cache addresses and branch outcomes are recorded and later used for improving cache and branch predictor performance. A hardware instruction prefetcher specialized for asynchronous programs is also proposed as a comparative design direction.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120780/1/gauravc_1.pd
    • …
    corecore