44,858 research outputs found

    Dynamic hierarchies in temporal directed networks

    Full text link
    The outcome of interactions in many real-world systems can be often explained by a hierarchy between the participants. Discovering hierarchy from a given directed network can be formulated as follows: partition vertices into levels such that, ideally, there are only forward edges, that is, edges from upper levels to lower levels. In practice, the ideal case is impossible, so instead we minimize some penalty function on the backward edges. One practical option for such a penalty is agony, where the penalty depends on the severity of the violation. In this paper we extend the definition of agony to temporal networks. In this setup we are given a directed network with time stamped edges, and we allow the rank assignment to vary over time. We propose 2 strategies for controlling the variation of individual ranks. In our first variant, we penalize the fluctuation of the rankings over time by adding a penalty directly to the optimization function. In our second variant we allow the rank change at most once. We show that the first variant can be solved exactly in polynomial time while the second variant is NP-hard, and in fact inapproximable. However, we develop an iterative method, where we first fix the change point and optimize the ranks, and then fix the ranks and optimize the change points, and reiterate until convergence. We show empirically that the algorithms are reasonably fast in practice, and that the obtained rankings are sensible

    Dwelling Quietly in the Rich Club: Brain Network Determinants of Slow Cortical Fluctuations

    Full text link
    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously -- elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala, and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow time scales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding "feeder" cortical regions show unstable, rapidly fluctuating dynamics likely crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.Comment: 35 pages, 6 figure

    Global network structure of dominance hierarchy of ant workers

    Get PDF
    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e., all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e., number of workers that the focal worker attacks), not in-degree (i.e., number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks.Comment: 5 figures, 2 tables, 4 supplementary figures, 2 supplementary table
    • …
    corecore