3,120 research outputs found

    DeepCare: A Deep Dynamic Memory Model for Predictive Medicine

    Full text link
    Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare observations, recorded in electronic medical records, are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors in space, models patient health state trajectories through explicit memory of historical records. Built on Long Short-Term Memory (LSTM), DeepCare introduces time parameterizations to handle irregular timed events by moderating the forgetting and consolidation of memory cells. DeepCare also incorporates medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden -- diabetes and mental health -- the results show improved modeling and risk prediction accuracy.Comment: Accepted at JBI under the new name: "Predicting healthcare trajectories from medical records: A deep learning approach

    High-Dimensional Fixed Effects Profiling Models and Applications in End-Stage Kidney Disease Patients: Current State and Future Directions

    Get PDF
    Profiling analysis aims to evaluate health care providers, including hospitals, nursing homes, or dialysis facilities among others with respect to a patient outcome, such as 30-day unplanned hospital readmission or mortality. Fixed effects (FE) profiling models have been developed over the last decade, motivated by the overall need to (a) improve accurate identification or “flagging” of under-performing providers, (b) relax assumptions inherent in random effects (RE) profiling models, and (c) take into consideration the unique disease characteristics and care/treatment processes of end-stage kidney disease (ESKD) patients on dialysis. In this paper, we review the current state of FE methodologies and their rationale in the ESKD population and illustrate applications in four key areas: profiling dialysis facilities for (1) patient hospitalizations over time (longitudinally) using standardized dynamic readmission ratio (SDRR), (2) identification of dialysis facility characteristics (e.g., staffing level) that contribute to hospital readmission, and (3) adverse recurrent events using standardized event ratio (SER). Also, we examine the operating characteristics with a focus on FE profiling models. Throughout these areas of applications to the ESKD population, we identify challenges for future research in both methodology and clinical studies

    Privacy-preserving scoring of tree ensembles : a novel framework for AI in healthcare

    Get PDF
    Machine Learning (ML) techniques now impact a wide variety of domains. Highly regulated industries such as healthcare and finance have stringent compliance and data governance policies around data sharing. Advances in secure multiparty computation (SMC) for privacy-preserving machine learning (PPML) can help transform these regulated industries by allowing ML computations over encrypted data with personally identifiable information (PII). Yet very little of SMC-based PPML has been put into practice so far. In this paper we present the very first framework for privacy-preserving classification of tree ensembles with application in healthcare. We first describe the underlying cryptographic protocols that enable a healthcare organization to send encrypted data securely to a ML scoring service and obtain encrypted class labels without the scoring service actually seeing that input in the clear. We then describe the deployment challenges we solved to integrate these protocols in a cloud based scalable risk-prediction platform with multiple ML models for healthcare AI. Included are system internals, and evaluations of our deployment for supporting physicians to drive better clinical outcomes in an accurate, scalable, and provably secure manner. To the best of our knowledge, this is the first such applied framework with SMC-based privacy-preserving machine learning for healthcare
    • …
    corecore