16,321 research outputs found

    A Spatial Agent-Based Model of N-Person Prisoner's Dilemma Cooperation in a Socio-Geographic Community

    Get PDF
    The purpose of this paper is to present a spatial agent-based model of N-person prisoner's dilemma that is designed to simulate the collective communication and cooperation within a socio-geographic community. Based on a tight coupling of REPAST and a vector Geographic Information System, the model simulates the emergence of cooperation from the mobility behaviors and interaction strategies of citizen agents. To approximate human behavior, the agents are set as stochastic learning automata with Pavlovian personalities and attitudes. A review of the theory of the standard prisoner's dilemma, the iterated prisoner's dilemma, and the N-person prisoner's dilemma is given as well as an overview of the generic architecture of the agent-based model. The capabilities of the spatial N-person prisoner's dilemma component are demonstrated with several scenario simulation runs for varied initial cooperation percentages and mobility dynamics. Experimental results revealed that agent mobility and context preservation bring qualitatively different effects to the evolution of cooperative behavior in an analyzed spatial environment.Agent Based Modeling, Cooperation, Prisoners Dilemma, Spatial Interaction Model, Spatially Structured Social Dilemma, Geographic Information Systems

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    F-formation Detection: Individuating Free-standing Conversational Groups in Images

    Full text link
    Detection of groups of interacting people is a very interesting and useful task in many modern technologies, with application fields spanning from video-surveillance to social robotics. In this paper we first furnish a rigorous definition of group considering the background of the social sciences: this allows us to specify many kinds of group, so far neglected in the Computer Vision literature. On top of this taxonomy, we present a detailed state of the art on the group detection algorithms. Then, as a main contribution, we present a brand new method for the automatic detection of groups in still images, which is based on a graph-cuts framework for clustering individuals; in particular we are able to codify in a computational sense the sociological definition of F-formation, that is very useful to encode a group having only proxemic information: position and orientation of people. We call the proposed method Graph-Cuts for F-formation (GCFF). We show how GCFF definitely outperforms all the state of the art methods in terms of different accuracy measures (some of them are brand new), demonstrating also a strong robustness to noise and versatility in recognizing groups of various cardinality.Comment: 32 pages, submitted to PLOS On

    Designing a training tool for imaging mental models

    Get PDF
    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network

    COSMOS-7: Video-oriented MPEG-7 scheme for modelling and filtering of semantic content

    Get PDF
    MPEG-7 prescribes a format for semantic content models for multimedia to ensure interoperability across a multitude of platforms and application domains. However, the standard leaves it open as to how the models should be used and how their content should be filtered. Filtering is a technique used to retrieve only content relevant to user requirements, thereby reducing the necessary content-sifting effort of the user. This paper proposes an MPEG-7 scheme that can be deployed for semantic content modelling and filtering of digital video. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user

    Distributed product development approaches and system for achieving optimal design.

    Get PDF
    The research in this dissertation attempts to provide theoretic approaches and design systems to support engineers who are located in different places and belong to different teams or companies to work collaboratively to perform product development.The second challenge is addressed by developing a collaborative design process modeling technique based on Petri-net. Petri-net is used to describe complex design processes and to construct different design process alternatives. These alternative Petri-net models are then analyzed to evaluate design process alternatives and to select the appropriate process.In this dissertation, three major challenges are identified in realization of a collaborative design paradigm: (i) development of design method that supports multidisciplinary xi design teams to collaboratively solve coupled design problems, (ii) development of process modeling techniques to support representation and improve complex collaborative design process, and (iii) implementation of a testbed system that demonstrates the feasibility of enhancing current design system to satisfy with the needs of organizing collaborative design process for collaborative decision making and associated design activities.New paradigms, along with accompanying approaches and software systems are necessary to support collaborative design work, in a distributed design environment, of multidisciplinary engineering teams who have different knowledge, experience, and skills. Current research generally focuses on the development of online collaborative tools, and software frameworks that integrate and coordinate these tools. However, a gap exists between the needs of a distributed collaborative design paradigm and current collaborative design tools. On one side, design methodologies facilitating engineering teams' decision making is not well developed. In a distributed collaborative design paradigm, each team holds its own perspective towards the product realization problem, and each team seeks design decisions that can maximize the design performance in its own discipline. Design methodologies that coordinate the separate design decisions are essential to achieve successful collaboration. On the other side, design of products is becoming more complex. Organizing a complex design process is a major obstacle in the application of a distributed collaborative design paradigm in practice. Therefore, the principal research goal in this dissertation is to develop a collaborative multidisciplinary decision making methodology and design process modeling technique that bridges the gap between a collaborative design paradigm and current collaborative design systems.To overcome the first challenge, decision templates are constructed to exchange design information among interacting disciplines. Three game protocols from game theory are utilized to categorize the collaboration in decision makings. Design formulations are used to capture the design freedom among coupled design activities.The third challenge, implementation of collaborative design testbed, is addressed by integration of existing Petri-net modeling tools into the design system. The testbed incorporates optimization software, collaborative design tools, and management software for product and process design to support group design activities.Two product realization examples are presented to demonstrate the applicability of the research and collaborative testbed. A simplified manipulator design example is used for explanation of collaborative decision making and design process organization. And a reverse engineering design example is introduced to verify the application of collaborative design paradigm with design support systems in practice

    Fifth Grade Teachers Use of Cooperative Learning in Science

    Get PDF
    This study aimed to explore Cooperative Learning theories and practice by examining the relationships among three aspects: Experience, Practice and Perceptions. The data were from interview records from eight science teachers. As a student-centered active pedagogical trend, cooperative learning has become part of one of the most effective and efficient educational trends that has illuminated constructivist science classrooms in South Texas. This method is conducive in the field of education. Students, in general, are encouraged to cooperatively get involved and to collaboratively participate in problem solving, discussions, and/or productions in group sessions to build a sense of community with the teacher’s facilitation to incorporate cooperative learning strategies. This qualitative case study will examine scholarly frameworks of the Cooperative Learning Model for Academic Achievement and the link between 5th grade Science teachers’ instructional expertise. Therefore, cooperative learning is significant enough that it can develop and/or sustain a constructive learning environment conducive for all learners alike. Cooperative learning is a constructive pedagogical trend that can be effectively applied to elementary science
    • …
    corecore