135,434 research outputs found

    Towards a Maude tool for model checking temporal graph properties

    Get PDF
    We present our prototypical tool for the verification of graph transformation systems. The major novelty of our tool is that it provides a model checker for temporal graph properties based on counterpart semantics for quantified m-calculi. Our tool can be considered as an instantiation of our approach to counterpart semantics which allows for a neat handling of creation, deletion and merging in systems with dynamic structure. Our implementation is based on the object-based machinery of Maude, which provides the basics to deal with attributed graphs. Graph transformation systems are specified with term rewrite rules. The model checker evaluates logical formulae of second-order modal m-calculus in the automatically generated CounterpartModel (a sort of unfolded graph transition system) of the graph transformation system under study. The result of evaluating a formula is a set of assignments for each state, associating node variables to actual nodes

    An Abstract Module Concept for Graph Transformation Systems

    Get PDF
    Graph transformation systems are a well known formal specification technique that support the rule based specification of the dynamic behaviour of systems. Recently, many specification languages for graph transformation systems have been developed, and modularization techniques are then needed in order to deal with large and complex graph transformation specifications, to enhance the reuse of specifications, and to hide implementation details. In this paper we present an abstract categorical approach to modularization of graph transformation systems. Modules are called cat–modules and defined over a generic category cat of graph transformation specifications and morphisms. We describe the main characteristics and properties of cat–modules, their interconnection operations, namely union, composition and refinement of modules, and some compatibility properties between such operations

    Modelling Emergency Scenarios using Algebraic High Level Net Transformation Systems with Net Patterns

    Get PDF
    Emergency operations are a good case study for dynamic systems. Their size and high dynamicity make modelling them a challenging task. Algebraic high level net transformation systems are a well suited technique for modelling such dynamic systems. They consist of an algebraic high level net and a set of graph transformation rules. The net reflects the initial state of the operation and the transformation rules can be used to adapt this state to reflect the dynamicity of the operation. The applicability of graph transformation rules depends on the existence of a match morphism. While designing the algebraic high level net transformation system the designer has to ensure the existence of the right match morphisms for all reachable runtime states. This can be a tedious and error prone task for the designer. This paper uses a case study for modelling emergency operations with algebraic high level net transformation systems to show how the notion of net patterns can help the designer to cope with rule applicability

    The Conversion of Dynamic Fault Trees to Stochastic Petri Nets, as a case of Graph Transformation

    Get PDF
    AbstractA model-to-model transformation from Dynamic Fault Trees to Stochastic Petri Nets, by means of graph transformation rules, is presented in this paper. Dynamic Fault Trees (DFT) are used for the reliability analysis of complex and large systems and represent by means of gates, how combinations or sequences of component failure events, lead to the failure of the system. DFTs need the state space solution which can be obtained by converting a DFT to a Stochastic Petri Net: this task is expressed by means of graph transformation rules, and is applied to a case of system

    Generic approach for graph-based description of dynamically reconfigurable architectures

    Get PDF
    Architectural adaptation is studied for handling adaptation in autonomic distributed systems. It is achieved by implementing a model-based approach for managing reconfiguration of dynamic architectures. Describing such architectures includes defining rules for describing both architectural styles and theirs reconfiguration mechanisms. Within this research context, the work presented in this paper is conducted using formal specification based on graphs and graph rewriting appropriately for tackling architectural adaptation problems. A graph-based general approach for describing architectures and handling their dynamic reconfiguration is introduced. Our approach is illustrated in the context of a distributed hierarchical application. The formal models that allow the generation of a graph grammar for dynamic architecture description and the automatic definition of transformation rules for achieving intern self-protecting during the adaptation are elaborated

    Towards the predictive analysis of cloud systems with e-Motions

    Get PDF
    Current methods for the predictive analysis of software systems are not directly applicable on self-adaptive systems as cloud systems, mainly due to their complexity and dynamism. To tackle the difficulties to handle the dynamic changes in the systems and their environments, we propose using graph transformation to define an adaptive com- ponent model and analysis tools for it, what allows us to carry on such analyses on dynamic architectures. Specifically, we use the e-Motions system to define the Palladio component model, and simulation-based analysis tools for it. Adaptation mechanisms are then specified as generic adaptation rules. This setting will allow us to study different mechanisms for the management of dynamic systems and their adaptation mechanisms, and different QoS metrics to be considered in a dynamic environment.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    04241 Abstracts Collection -- Graph Transformations and Process Algebras for Modeling Distributed and Mobile Systems

    Get PDF
    Recently there has been a lot of research, combining concepts of process algebra with those of the theory of graph grammars and graph transformation systems. Both can be viewed as general frameworks in which one can specify and reason about concurrent and distributed systems. There are many areas where both theories overlap and this reaches much further than just using graphs to give a graphic representation to processes. Processes in a communication network can be seen in two different ways: as terms in an algebraic theory, emphasizing their behaviour and their interaction with the environment, and as nodes (or edges) in a graph, emphasizing their topology and their connectedness. Especially topology, mobility and dynamic reconfigurations at runtime can be modelled in a very intuitive way using graph transformation. On the other hand the definition and proof of behavioural equivalences is often easier in the process algebra setting. Also standard techniques of algebraic semantics for universal constructions, refinement and compositionality can take better advantage of the process algebra representation. An important example where the combined theory is more convenient than both alternatives is for defining the concurrent (noninterleaving), abstract semantics of distributed systems. Here graph transformations lack abstraction and process algebras lack expressiveness. Another important example is the work on bigraphical reactive systems with the aim of deriving a labelled transitions system from an unlabelled reactive system such that the resulting bisimilarity is a congruence. Here, graphs seem to be a convenient framework, in which this theory can be stated and developed. So, although it is the central aim of both frameworks to model and reason about concurrent systems, the semantics of processes can have a very different flavour in these theories. Research in this area aims at combining the advantages of both frameworks and translating concepts of one theory into the other. The Dagsuthl Seminar, which took place from 06.06. to 11.06.2004, was aimed at bringing together researchers of the two communities in order to share their ideas and develop new concepts. These proceedings4 of the do not only contain abstracts of the talks given at the seminar, but also summaries of topics of central interest. We would like to thank all participants of the seminar for coming and sharing their ideas and everybody who has contributed to the proceedings
    • 

    corecore