208 research outputs found

    Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons

    Get PDF
    We consider the geodesic convex hulls of points in a simple polygonal region in the presence of non-crossing line segments (barriers) that subdivide the region into simply connected faces. We present an algorithm together with data structures for maintaining the geodesic convex hull of points in each face in a sublinear update time under the fully-dynamic setting where both input points and barriers change by insertions and deletions. The algorithm processes a mixed update sequence of insertions and deletions of points and barriers. Each update takes O(n^2/3 log^2 n) time with high probability, where n is the total number of the points and barriers at the moment. Our data structures support basic queries on the geodesic convex hull, each of which takes O(polylog n) time. In addition, we present an algorithm together with data structures for geodesic triangle counting queries under the fully-dynamic setting. With high probability, each update takes O(n^2/3 log n) time, and each query takes O(n^2/3 log n) time

    Threadable Curves

    Get PDF
    We define a plane curve to be threadable if it can rigidly pass through a point-hole in a line L without otherwise touching L. Threadable curves are in a sense generalizations of monotone curves. We have two main results. The first is a linear-time algorithm for deciding whether a polygonal curve is threadable---O(n) for a curve of n vertices---and if threadable, finding a sequence of rigid motions to thread it through a hole. We also sketch an argument that shows that the threadability of algebraic curves can be decided in time polynomial in the degree of the curve. The second main result is an O(n polylog n)-time algorithm for deciding whether a 3D polygonal curve can thread through hole in a plane in R^3, and if so, providing a description of the rigid motions that achieve the threading.Comment: 16 pages, 12 figures, 12 references. v2: Revised with brief addendum after Mikkel Abrahamsen pointed us to a relevant reference on "sweepable polygons." v3: Major revisio

    Relative Convex Hull Determination from Convex Hulls in the Plane

    Full text link
    A new algorithm for the determination of the relative convex hull in the plane of a simple polygon A with respect to another simple polygon B which contains A, is proposed. The relative convex hull is also known as geodesic convex hull, and the problem of its determination in the plane is equivalent to find the shortest curve among all Jordan curves lying in the difference set of B and A and encircling A. Algorithms solving this problem known from Computational Geometry are based on the triangulation or similar decomposition of that difference set. The algorithm presented here does not use such decomposition, but it supposes that A and B are given as ordered sequences of vertices. The algorithm is based on convex hull calculations of A and B and of smaller polygons and polylines, it produces the output list of vertices of the relative convex hull from the sequence of vertices of the convex hull of A.Comment: 15 pages, 4 figures, Conference paper published. We corrected two typing errors in Definition 2: ISI_S has to be defined based on OSO_S, and IEI_E has to be defined based on OEO_E (not just using OO). These errors appeared in the text of the original conference paper, which also contained the pseudocode of an algorithm where ISI_S and IEI_E appeared as correctly define

    Algorithms for distance problems in planar complexes of global nonpositive curvature

    Full text link
    CAT(0) metric spaces and hyperbolic spaces play an important role in combinatorial and geometric group theory. In this paper, we present efficient algorithms for distance problems in CAT(0) planar complexes. First of all, we present an algorithm for answering single-point distance queries in a CAT(0) planar complex. Namely, we show that for a CAT(0) planar complex K with n vertices, one can construct in O(n^2 log n) time a data structure D of size O(n^2) so that, given a point x in K, the shortest path gamma(x,y) between x and the query point y can be computed in linear time. Our second algorithm computes the convex hull of a finite set of points in a CAT(0) planar complex. This algorithm is based on Toussaint's algorithm for computing the convex hull of a finite set of points in a simple polygon and it constructs the convex hull of a set of k points in O(n^2 log n + nk log k) time, using a data structure of size O(n^2 + k)

    Shooting permanent rays among disjoint polygons in the plane

    Full text link
    We present a data structure for ray shooting-and-insertion in the free space among disjoint polygonal obstacles with a total of nn vertices in the plane, where each ray starts at the boundary of some obstacle. The portion of each query ray between the starting point and the first obstacle hit is inserted permanently as a new obstacle. Our data structure uses O(n log n) space and preprocessing time, and it supports m successive ray shooting-and-insertion queries in O(n log2 n + m log m) total time. We present two applications for our data structure: (1) Our data structure supports efficient implementation of auto-partitions in the plane i.e. binary space partitions where each partition is done along the supporting line of an input segment. If n input line segments are fragmented into m pieces by an auto-partition, then it can now be implemented in O(n log2n+m log m) time. This improves the expected runtime of Patersen and Yao's classical randomized auto-partition algorithm for n disjoint line segments to O(n log2 n). (2) If we are given disjoint polygonal obstacles with a total of n vertices in the plane, a permutation of the reflex vertices, and a half-line at each reflex vertex that partitions the reflex angle into two convex angles, then the folklore convex partitioning algorithm draws a ray emanating from each reflex vertex in the prescribed order in the given direction until it hits another obstacle, a previous ray, or infinity. The previously best implementation (with a semi-dynamic ray shooting data structure) requires O(n3/2-e/2) time using O(n1+e) space. Our data structure improves the runtime to O(n log2 n)

    Configuration Space and Visibility Graph Generation from Geometric Workspaces for UAVs

    Get PDF

    Playing Billiard in Version Space

    Full text link
    A ray-tracing method inspired by ergodic billiards is used to estimate the theoretically best decision rule for a set of linear separable examples. While the Bayes-optimum requires a majority decision over all Perceptrons separating the example set, the problem considered here corresponds to finding the single Perceptron with best average generalization probability. For randomly distributed examples the billiard estimate agrees with known analytic results. In real-life classification problems the generalization error is consistently reduced compared to the maximal stability Perceptron.Comment: uuencoded, gzipped PostScript file, 127576 bytes To recover 1) save file as bayes.uue. Then 2) uudecode bayes.uue and 3) gunzip bayes.ps.g
    corecore