7,914 research outputs found

    Wearable Platform for Automatic Recognition of Parkinson Disease by Muscular Implication Monitoring

    Get PDF
    The need for diagnostic tools for the characterization of progressive movement disorders - as the Parkinson Disease (PD) - aiming to early detect and monitor the pathology is getting more and more impelling. The parallel request of wearable and wireless solutions, for the real-time monitoring in a non-controlled environment, has led to the implementation of a Quantitative Gait Analysis platform for the extraction of muscular implications features in ordinary motor action, such as gait. The here proposed platform is used for the quantification of PD symptoms. Addressing the wearable trend, the proposed architecture is able to define the real-time modulation of the muscular indexes by using 8 EMG wireless nodes positioned on lower limbs. The implemented system “translates” the acquisition in a 1-bit signal, exploiting a dynamic thresholding algorithm. The resulting 1-bit signals are used both to define muscular indexes both to drastically reduce the amount of data to be analyzed, preserving at the same time the muscular information. The overall architecture has been fully implemented on Altera Cyclone V FPGA. The system has been tested on 4 subjects: 2 affected by PD and 2 healthy subjects (control group). The experimental results highlight the validity of the proposed solution in Disease recognition and the outcomes match the clinical literature results

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    Mobile Quantification and Therapy Course Tracking for Gait Rehabilitation

    Full text link
    This paper presents a novel autonomous quality metric to quantify the rehabilitations progress of subjects with knee/hip operations. The presented method supports digital analysis of human gait patterns using smartphones. The algorithm related to the autonomous metric utilizes calibrated acceleration, gyroscope and magnetometer signals from seven Inertial Measurement Unit attached on the lower body in order to classify and generate the grading system values. The developed Android application connects the seven Inertial Measurement Units via Bluetooth and performs the data acquisition and processing in real-time. In total nine features per acceleration direction and lower body joint angle are calculated and extracted in real-time to achieve a fast feedback to the user. We compare the classification accuracy and quantification capabilities of Linear Discriminant Analysis, Principal Component Analysis and Naive Bayes algorithms. The presented system is able to classify patients and control subjects with an accuracy of up to 100\%. The outcomes can be saved on the device or transmitted to treating physicians for later control of the subject's improvements and the efficiency of physiotherapy treatments in motor rehabilitation. The proposed autonomous quality metric solution bears great potential to be used and deployed to support digital healthcare and therapy.Comment: 5 Page

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page

    A cane-based low cost sensor to implement attention mechanisms in telecare robots

    Get PDF
    Telepresence robots have been recently used for Comprehensive Geriatric Assessment (CGA). Since the robot can not track a person continuously, there are several strategies to decide when to check them, from cyclic checks to simple requests from users and/or caregivers. In order to adapt to the user needs and condition, it is preferable to perform CGA as soon as regularities appear. However, this requires detection of potential issues in users to offer immediate service. In this work we propose a new low cost force sensor system to detect user’s condition and attract attention of CGA robots, so they can perform a full examination on a need basis. The main advantages of this system are: i) it can be attached to any standard commercial cane; ii) its power consumption is very reduced; and iii) it provides continuous information as long as the user walks. It has been tested with several elderly volunteers in care facilities. Results have proven that the sensor readings are indeed correlated with the users’ condition.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions
    corecore