1,720 research outputs found

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    A Fuzzy Logic-based Cascade Control without Actuator Saturation for the Unmanned Underwater Vehicle Trajectory Tracking

    Full text link
    An intelligent control strategy is proposed to eliminate the actuator saturation problem that exists in the trajectory tracking process of unmanned underwater vehicles (UUV). The control strategy consists of two parts: for the kinematic modeling part, a fuzzy logic-refined backstepping control is developed to achieve control velocities within acceptable ranges and errors of small fluctuations; on the basis of the velocities deducted by the improved kinematic control, the sliding mode control (SMC) is introduced in the dynamic modeling to obtain corresponding torques and forces that should be applied to the vehicle body. With the control velocities computed by the kinematic model and applied forces derived by the dynamic model, the robustness and accuracy of the UUV trajectory without actuator saturation can be achieved

    Review of sliding mode control application in autonomous underwater vehicles

    Get PDF
    973-984This paper presents a review of sliding mode control for autonomous underwater vehicles (AUVs). The AUVs are used under water operating in the presence of uncertainties (due to hydrodynamics coefficients) and external disturbances (due to water currents, waves, etc.). Sliding mode controller is one of the nonlinear robust controllers which is robust towards uncertainties, parameter variations and external disturbances. The evolution of sliding mode control in motion control studies of autonomous underwater vehicles is summarized throughout for the last three decades. The performance of the controller is examined based on the chattering reduction, accuracy (steady state error reduction), and robustness against perturbation. The review on sliding mode control for AUVs provides insights for readers to design new techniques and algorithms, to enhance the existing family of sliding mode control strategies into a new one or to merge and re-supervise the control techniques with other control strategies, in which, the aim is to obtain good controller design for AUVs in terms of great performance, stability and robustness

    A robust dynamic region-based control scheme for an autonomous underwater vehicle

    Get PDF
    Intelligent control of an autonomous underwater vehicle (AUV) requires a control scheme which is robust to external perturbations. These perturbations are highly uncertain and can prevent the AUV from accomplishing its mission. A well-known robust control called sliding mode control (SMC) and its development have been introduced. However, it produces a chattering effect which requires more energy. To overcome this problem, this paper presents a novel robust dynamic region-based control scheme. An AUV needs to be able not only to track a moving target as a region but also to position itself inside the region. The proposed controller is developed based on an adaptive sliding mode scheme. An adaptive element is useful for the AUV to attenuate the effect of external disturbances and also the chattering effect. Additionally, the application of the dynamic-region concept can reduce the energy demand. Simulations are performed to illustrate the effectiveness of the proposed controller. Furthermore, a Lyapunov-like function is presented for stability analysis. It is demonstrated that the proposed controller works better then an adaptive sliding mode without the region boundary scheme and a fuzzy sliding mode controller

    Super Twisting Sliding Mode Control with Region Boundary Scheme for an Autonomous Underwater Vehicle

    Get PDF
    A robust tracking control for an Autonomous Underwater Vehicle (AUV) system operated in the extreme ocean environment activities is very much needed due to its external disturbances potentially disturb the stability of the system. This research proposes a new robust-region based controller which integrates Super Twisting Sliding Mode Control (STSMC) with region boundary approach in the presence of determined disturbances. STSMC is a second order SMC which combines between continuous signal and discontinuous signal to produce a robust system. By incorporating region based control into STSMC, the desired trajectory defined as a region produces an energy saving control compared to conventional point based control. Energy function of region error is applied on the AUV to maintain inside the desired region during tracking mission, thus, minimizing the energy usage. Analysis on a Lyapunov candidate proved that the proposed control achieved a global asymptotic stability and showed less chattering, providing 20s faster response time to handle perturbations, less transient of thrusters\u27 propulsion and ability to save 50% of energy consumption compared to conventional SMC, Fuzzy SMC and STSMC. Overall, the newly developed controller contributed to a new robust, stable and energy saving controller for an AUV in the presence of external disturbances

    Navigation Control of an Automated Guided Underwater Robot using Neural Network Technique

    Get PDF
    In recent years, under water robots play an important role in various under water operations. There is an increase in research in this area because of the application of autonomous underwater robots in several issues like exploring under water environment and resource, doing scientific and military tasks under water. We need good maneuvering capabilities and a well precision for moving in a specified track in these applications. However, control of these under water bots become very difficult due to the highly non-linear and dynamic characteristics of the underwater world. The logical answer to this problem is the application of non-linear controllers. As neural networks (NNs) are characterized by flexibility and an aptitude for dealing with non-linear problems, they are envisaged to be beneficial when used on underwater robots. In this research our artificial intelligence system is based on neural network model for navigation of an Automated Underwater robot in unpredictable and imprecise environment. Thus the back propagation algorithm has been used for the steering analysis of the underwater robot when it is encountered by a left, right and front as well as top obstacle. After training the neural network the neural network pattern was used in the controller of the underwater robot. The simulation of underwater robot under various obstacle conditions are shown using MATLAB
    corecore