66 research outputs found

    Analyzing Patient Trajectories With Artificial Intelligence

    Full text link
    In digital medicine, patient data typically record health events over time (eg, through electronic health records, wearables, or other sensing technologies) and thus form unique patient trajectories. Patient trajectories are highly predictive of the future course of diseases and therefore facilitate effective care. However, digital medicine often uses only limited patient data, consisting of health events from only a single or small number of time points while ignoring additional information encoded in patient trajectories. To analyze such rich longitudinal data, new artificial intelligence (AI) solutions are needed. In this paper, we provide an overview of the recent efforts to develop trajectory-aware AI solutions and provide suggestions for future directions. Specifically, we examine the implications for developing disease models from patient trajectories along the typical workflow in AI: problem definition, data processing, modeling, evaluation, and interpretation. We conclude with a discussion of how such AI solutions will allow the field to build robust models for personalized risk scoring, subtyping, and disease pathway discovery

    Fuzzy Distance Measure Based Affinity Propagation Clustering

    Get PDF
    Affinity Propagation (AP) is an effective algorithm that find exemplars repeatedly exchange real valued messages between pairs of data points. AP uses the similarity between data points to calculate the messages. Hence, the construction of similarity is essential in the AP algorithm. A common choice for similarity is the negative Euclidean distance. However, due to the simplicity of Euclidean distance, it cannot capture the real structure of data. Furthermore, Euclidean distance is sensitive to noise and outliers such that the performance of the AP might be degraded. Therefore, researchers have intended to utilize different similarity measures to analyse the performance of AP. nonetheless, there is still a room to enhance the performance of AP clustering. A clustering method called fuzzy based Affinity propagation (F-AP) is proposed, which is based on a fuzzy similarity measure. Experiments shows the efficiency of the proposed F-AP, experiments is performed on UCI dataset. Results shows a promising improvement on AP

    Artificial Intelligence in Process Engineering

    Get PDF
    In recent years, the field of Artificial Intelligence (AI) is experiencing a boom, caused by recent breakthroughs in computing power, AI techniques, and software architectures. Among the many fields being impacted by this paradigm shift, process engineering has experienced the benefits caused by AI. However, the published methods and applications in process engineering are diverse, and there is still much unexploited potential. Herein, the goal of providing a systematic overview of the current state of AI and its applications in process engineering is discussed. Current applications are described and classified according to a broader systematic. Current techniques, types of AI as well as pre- and postprocessing will be examined similarly and assigned to the previously discussed applications. Given the importance of mechanistic models in process engineering as opposed to the pure black box nature of most of AI, reverse engineering strategies as well as hybrid modeling will be highlighted. Furthermore, a holistic strategy will be formulated for the application of the current state of AI in process engineering

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine

    Full text link
    Artificial intelligence (AI) continues to transform data analysis in many domains. Progress in each domain is driven by a growing body of annotated data, increased computational resources, and technological innovations. In medicine, the sensitivity of the data, the complexity of the tasks, the potentially high stakes, and a requirement of accountability give rise to a particular set of challenges. In this review, we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making. (1) Explainable AI aims to produce a human-interpretable justification for each output. Such models increase confidence if the results appear plausible and match the clinicians expectations. However, the absence of a plausible explanation does not imply an inaccurate model. Especially in highly non-linear, complex models that are tuned to maximize accuracy, such interpretable representations only reflect a small portion of the justification. (2) Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains. For example, a classification task based on images acquired on different acquisition hardware. (3) Federated learning enables learning large-scale models without exposing sensitive personal health information. Unlike centralized AI learning, where the centralized learning machine has access to the entire training data, the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates, not personal health data. This narrative review covers the basic concepts, highlights relevant corner-stone and state-of-the-art research in the field, and discusses perspectives.Comment: This paper is accepted in IEEE CAA Journal of Automatica Sinica, Nov. 10 202

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods
    corecore