23,070 research outputs found

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    EMPATH: A Neural Network that Categorizes Facial Expressions

    Get PDF
    There are two competing theories of facial expression recognition. Some researchers have suggested that it is an example of "categorical perception." In this view, expression categories are considered to be discrete entities with sharp boundaries, and discrimination of nearby pairs of expressive faces is enhanced near those boundaries. Other researchers, however, suggest that facial expression perception is more graded and that facial expressions are best thought of as points in a continuous, low-dimensional space, where, for instance, "surprise" expressions lie between "happiness" and "fear" expressions due to their perceptual similarity. In this article, we show that a simple yet biologically plausible neural network model, trained to classify facial expressions into six basic emotions, predicts data used to support both of these theories. Without any parameter tuning, the model matches a variety of psychological data on categorization, similarity, reaction times, discrimination, and recognition difficulty, both qualitatively and quantitatively. We thus explain many of the seemingly complex psychological phenomena related to facial expression perception as natural consequences of the tasks' implementations in the brain

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    Towards responsive Sensitive Artificial Listeners

    Get PDF
    This paper describes work in the recently started project SEMAINE, which aims to build a set of Sensitive Artificial Listeners – conversational agents designed to sustain an interaction with a human user despite limited verbal skills, through robust recognition and generation of non-verbal behaviour in real-time, both when the agent is speaking and listening. We report on data collection and on the design of a system architecture in view of real-time responsiveness
    corecore