314 research outputs found

    Facial Expression Analysis under Partial Occlusion: A Survey

    Full text link
    Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment and human computer interaction. The vast majority of completed FEA studies are based on non-occluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better informed and benchmarked future work.Comment: Authors pre-print of the article accepted for publication in ACM Computing Surveys (accepted on 02-Nov-2017

    AUTOMATIC RECOGNITION OF FACIAL EXPRESSION BASED ON COMPUTER VISION

    Full text link

    A dynamic texture based approach to recognition of facial actions and their temporal models

    Get PDF
    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the dynamics and the appearance in the face region of an input video are compared: an extended version of Motion History Images and a novel method based on Nonrigid Registration using Free-Form Deformations (FFDs). The extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain. Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the proposed method achieved an average event recognition accuracy of 89.2 percent for the MHI method and 94.3 percent for the FFD method. The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the performance on spontaneous expressions in the Sensitive Artificial Listener data set

    Analysis on techniques used to recognize and identifying the Human emotions

    Get PDF
    Facial expression is a major area for non-verbal language in day to day life communication. As the statistical analysis shows only 7 percent of the message in communication was covered in verbal communication while 55 percent transmitted by facial expression. Emotional expression has been a research subject of physiology since Darwin’s work on emotional expression in the 19th century. According to Psychological theory the classification of human emotion is classified majorly into six emotions: happiness, fear, anger, surprise, disgust, and sadness. Facial expressions which involve the emotions and the nature of speech play a foremost role in expressing these emotions. Thereafter, researchers developed a system based on Anatomic of face named Facial Action Coding System (FACS) in 1970. Ever since the development of FACS there is a rapid progress of research in the domain of emotion recognition. This work is intended to give a thorough comparative analysis of the various techniques and methods that were applied to recognize and identify human emotions. This analysis results will help to identify the proper and suitable techniques, algorithms and the methodologies for future research directions. In this paper extensive analysis on the various recognition techniques used to identify the complexity in recognizing the facial expression is presented. This work will also help researchers and scholars to ease out the problem in choosing the techniques used in the identification of the facial expression domain

    FusionSense: Emotion Classification using Feature Fusion of Multimodal Data and Deep learning in a Brain-inspired Spiking Neural Network

    Get PDF
    Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state of the art deep learning methods and combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG), skin temperature, along with facial expressions, voice, posture to name a few, in order to classify emotions. Spiking neural networks (SNNs) represent the third generation of neural networks and employ biologically plausible models of neurons. SNNs have been shown to handle Spatio-temporal data, which is essentially the nature of the data encountered in emotion recognition problem, in an efficient manner. In this work, for the first time, we propose the application of SNNs in order to solve the emotion recognition problem with the multimodal dataset. Specifically, we use the NeuCube framework, which employs an evolving SNN architecture to classify emotional valence and evaluate the performance of our approach on the MAHNOB-HCI dataset. The multimodal data used in our work consists of facial expressions along with physiological signals such as ECG, skin temperature, skin conductance, respiration signal, mouth length, and pupil size. We perform classification under the Leave-One-Subject-Out (LOSO) cross-validation mode. Our results show that the proposed approach achieves an accuracy of 73.15% for classifying binary valence when applying feature-level fusion, which is comparable to other deep learning methods. We achieve this accuracy even without using EEG, which other deep learning methods have relied on to achieve this level of accuracy. In conclusion, we have demonstrated that the SNN can be successfully used for solving the emotion recognition problem with multimodal data and also provide directions for future research utilizing SNN for Affective computing. In addition to the good accuracy, the SNN recognition system is requires incrementally trainable on new data in an adaptive way. It only one pass training, which makes it suitable for practical and on-line applications. These features are not manifested in other methods for this problem.Peer reviewe
    • …
    corecore