2,890 research outputs found

    Dynamic Facial Emotion Recognition Oriented to HCI Applications

    Get PDF
    Producción CientíficaAs part of a multimodal animated interface previously presented in [38], in this paper we describe a method for dynamic recognition of displayed facial emotions on low resolution streaming images. First, we address the detection of Action Units of the Facial Action Coding System upon Active Shape Models and Gabor filters. Normalized outputs of the Action Unit recognition step are then used as inputs for a neural network which is based on real cognitive systems architecture, and consists on a habituation network plus a competitive network. Both the competitive and the habituation layer use differential equations thus taking into account the dynamic information of facial expressions through time. Experimental results carried out on live video sequences and on the Cohn-Kanade face database show that the proposed method provides high recognition hit rates.Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    A Review on Human-Computer Interaction and Intelligent Robots

    Get PDF
    In the field of artificial intelligence, human–computer interaction (HCI) technology and its related intelligent robot technologies are essential and interesting contents of research. From the perspective of software algorithm and hardware system, these above-mentioned technologies study and try to build a natural HCI environment. The purpose of this research is to provide an overview of HCI and intelligent robots. This research highlights the existing technologies of listening, speaking, reading, writing, and other senses, which are widely used in human interaction. Based on these same technologies, this research introduces some intelligent robot systems and platforms. This paper also forecasts some vital challenges of researching HCI and intelligent robots. The authors hope that this work will help researchers in the field to acquire the necessary information and technologies to further conduct more advanced research

    A survey on mouth modeling and analysis for Sign Language recognition

    Get PDF
    © 2015 IEEE.Around 70 million Deaf worldwide use Sign Languages (SLs) as their native languages. At the same time, they have limited reading/writing skills in the spoken language. This puts them at a severe disadvantage in many contexts, including education, work, usage of computers and the Internet. Automatic Sign Language Recognition (ASLR) can support the Deaf in many ways, e.g. by enabling the development of systems for Human-Computer Interaction in SL and translation between sign and spoken language. Research in ASLR usually revolves around automatic understanding of manual signs. Recently, ASLR research community has started to appreciate the importance of non-manuals, since they are related to the lexical meaning of a sign, the syntax and the prosody. Nonmanuals include body and head pose, movement of the eyebrows and the eyes, as well as blinks and squints. Arguably, the mouth is one of the most involved parts of the face in non-manuals. Mouth actions related to ASLR can be either mouthings, i.e. visual syllables with the mouth while signing, or non-verbal mouth gestures. Both are very important in ASLR. In this paper, we present the first survey on mouth non-manuals in ASLR. We start by showing why mouth motion is important in SL and the relevant techniques that exist within ASLR. Since limited research has been conducted regarding automatic analysis of mouth motion in the context of ALSR, we proceed by surveying relevant techniques from the areas of automatic mouth expression and visual speech recognition which can be applied to the task. Finally, we conclude by presenting the challenges and potentials of automatic analysis of mouth motion in the context of ASLR

    Face and Body gesture recognition for a vision-based multimodal analyser

    Full text link
    users, computers should be able to recognize emotions, by analyzing the human's affective state, physiology and behavior. In this paper, we present a survey of research conducted on face and body gesture and recognition. In order to make human-computer interfaces truly natural, we need to develop technology that tracks human movement, body behavior and facial expression, and interprets these movements in an affective way. Accordingly in this paper, we present a framework for a vision-based multimodal analyzer that combines face and body gesture and further discuss relevant issues

    Island Loss for Learning Discriminative Features in Facial Expression Recognition

    Full text link
    Over the past few years, Convolutional Neural Networks (CNNs) have shown promise on facial expression recognition. However, the performance degrades dramatically under real-world settings due to variations introduced by subtle facial appearance changes, head pose variations, illumination changes, and occlusions. In this paper, a novel island loss is proposed to enhance the discriminative power of the deeply learned features. Specifically, the IL is designed to reduce the intra-class variations while enlarging the inter-class differences simultaneously. Experimental results on four benchmark expression databases have demonstrated that the CNN with the proposed island loss (IL-CNN) outperforms the baseline CNN models with either traditional softmax loss or the center loss and achieves comparable or better performance compared with the state-of-the-art methods for facial expression recognition.Comment: 8 pages, 3 figure

    FusionSense: Emotion Classification using Feature Fusion of Multimodal Data and Deep learning in a Brain-inspired Spiking Neural Network

    Get PDF
    Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state of the art deep learning methods and combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG), skin temperature, along with facial expressions, voice, posture to name a few, in order to classify emotions. Spiking neural networks (SNNs) represent the third generation of neural networks and employ biologically plausible models of neurons. SNNs have been shown to handle Spatio-temporal data, which is essentially the nature of the data encountered in emotion recognition problem, in an efficient manner. In this work, for the first time, we propose the application of SNNs in order to solve the emotion recognition problem with the multimodal dataset. Specifically, we use the NeuCube framework, which employs an evolving SNN architecture to classify emotional valence and evaluate the performance of our approach on the MAHNOB-HCI dataset. The multimodal data used in our work consists of facial expressions along with physiological signals such as ECG, skin temperature, skin conductance, respiration signal, mouth length, and pupil size. We perform classification under the Leave-One-Subject-Out (LOSO) cross-validation mode. Our results show that the proposed approach achieves an accuracy of 73.15% for classifying binary valence when applying feature-level fusion, which is comparable to other deep learning methods. We achieve this accuracy even without using EEG, which other deep learning methods have relied on to achieve this level of accuracy. In conclusion, we have demonstrated that the SNN can be successfully used for solving the emotion recognition problem with multimodal data and also provide directions for future research utilizing SNN for Affective computing. In addition to the good accuracy, the SNN recognition system is requires incrementally trainable on new data in an adaptive way. It only one pass training, which makes it suitable for practical and on-line applications. These features are not manifested in other methods for this problem.Peer reviewe
    corecore