356 research outputs found

    Designing Approximate Computing Circuits with Scalable and Systematic Data-Driven Techniques

    Get PDF
    Semiconductor feature size has been shrinking significantly in the past decades. This decreasing trend of feature size leads to faster processing speed as well as lower area and power consumption. Among these attributes, power consumption has emerged as the primary concern in the design of integrated circuits in recent years due to the rapid increasing demand of energy efficient Internet of Things (IoT) devices. As a result, low power design approaches for digital circuits have become of great attractive in the past few years. To this end, approximate computing in hardware design has emerged as a promising design technique. It provides design opportunities to improve timing and energy efficiency by relaxing computing quality. This technique is feasible because of the error-resiliency of many emerging resource-hungry computational applications such as multimedia processing and machine learning. Thus, it is reasonable to utilize this characteristic to trade an acceptable amount of computing quality for energy saving. In the literature, most prior works on approximate circuit design focus on using manual design strategies to redesign fundamental computational blocks such as adders and multipliers. However, the manual design techniques are not suitable for system level hardware due to much higher design complexity. In order to tackle this challenge, we focus on designing scalable, systematic and general design methodologies that are applicable on any circuits. In this paper, we present two novel approximate circuit design methods based on machine learning techniques. Both methods skip the complicated manual analysis steps and primarily look at the given input-error pattern to generate approximate circuits. Our first work presents a framework for designing compensation block, an essential component in many approximate circuits, based on feature selection. Our second work further extends and optimizes this framework and integrates data-driven consideration into the design. Several case studies on fixed-width multipliers and other approximate circuits are presented to demonstrate the effectiveness of the proposed design methods. The experimental results show that both of the proposed methods are able to automatically and efficiently design low-error approximate circuits

    A Study on Efficient Designs of Approximate Arithmetic Circuits

    Get PDF
    Approximate computing is a popular field where accuracy is traded with energy. It can benefit applications such as multimedia, mobile computing and machine learning which are inherently error resilient. Error introduced in these applications to a certain degree is beyond human perception. This flexibility can be exploited to design area, delay and power efficient architectures. However, care must be taken on how approximation compromises the correctness of results. This research work aims to provide approximate hardware architectures with error metrics and design metrics analyzed and their effects in image processing applications. Firstly, we study and propose unsigned array multipliers based on probability statistics and with approximate 4-2 compressors, full adders and half adders. This work deals with a new design approach for approximation of multipliers. The partial products of the multiplier are altered to introduce varying probability terms. Logic complexity of approximation is varied for the accumulation of altered partial products based on their probability. The proposed approximation is utilized in two variants of 16-bit multipliers. Synthesis results reveal that two proposed multipliers achieve power savings of 72% and 38% respectively compared to an exact multiplier. They have better precision when compared to existing approximate multipliers. Mean relative error distance (MRED) figures are as low as 7.6% and 0.02% for the proposed approximate multipliers, which are better than the previous state-of-the-art works. Performance of the proposed multipliers is evaluated with geometric mean filtering application, where one of the proposed models achieves the highest peak signal to noise ratio (PSNR). Second, approximation is proposed for signed Booth multiplication. Approximation is introduced in partial product generation and partial product accumulation circuits. In this work, three multipliers (ABM-M1, ABM-M2, and ABM-M3) are proposed in which the modified Booth algorithm is approximated. In all three designs, approximate Booth partial product generators are designed with different variations of approximation. The approximations are performed by reducing the logic complexity of the Booth partial product generator, and the accumulation of partial products is slightly modified to improve circuit performance. Compared to the exact Booth multiplier, ABM-M1 achieves up to 15% reduction in power consumption with an MRED value of 7.9 × 10-4. ABM-M2 has power savings of up to 60% with an MRED of 1.1 × 10-1. ABM-M3 has power savings of up to 50% with an MRED of 3.4 × 10-3. Compared to existing approximate Booth multipliers, the proposed multipliers ABM-M1 and ABM-M3 achieve up to a 41% reduction in power consumption while exhibiting very similar error metrics. Image multiplication and matrix multiplication are used as case studies to illustrate the high performance of the proposed approximate multipliers. Third, distributed arithmetic based sum of products units approximation is analyzed. Sum of products units are key elements in many digital signal processing applications. Three approximate sum of products models which are based on distributed arithmetic are proposed. They are designed for different levels of accuracy. First model of approximate sum of products achieves an improvement up to 64% on area and 70% on power, when compared to conventional unit. Other two models provide an improvement of 32% and 48% on area and 54% and 58% on power, respectively, with a reduced error rate compared to the first model. Third model achieves MRED and normalized mean error distance (NMED) as low as 0.05% and 0.009%. Performance of approximate units is evaluated with a noisy image smoothing application, where the proposed models are capable of achieving higher PSNR than existing state of the art techniques. Fourth, approximation is applied in division architecture. Two approximation models are proposed for restoring divider. In the first design, approximation is performed at circuit level, where approximate divider cells are utilized in place of exact ones by simplifying the logic equations. In the second model, restoring divider is analyzed strategically and number of restoring divider cells are reduced by finding the portions of divisor and dividend with significant information. An approximation factor pp is used in both designs. In model 1, the design with p=8 has a 58% reduction in both area and power consumption compared to exact design, with a Q-MRED of 1.909 × 10-2 and Q-NMED of 0.449 × 10-2. The second model with an approximation factor p=4 has 54% area savings and 62% power savings compared to exact design. The proposed models are found to have better error metrics compared to existing designs, with better performance at similar error values. A change detection image processing application is used for real time assessment of proposed and existing approximate dividers and one of the models achieves a PSNR of 54.27 dB

    Energy Efficient Design for Deep Sub-micron CMOS VLSIs

    Get PDF
    Over the past decade, low power, energy efficient VLSI design has been the focal point of active research and development. The rapid technology scaling, the growing integration capacity, and the mounting active and leakage power dissipation are contributing to the growing complexity of modern VLSI design. Careful power planning on all design levels is required. This dissertation tackles the low-power, low-energy challenges in deep sub-micron technologies on the architecture and circuit levels. Voltage scaling is one of the most efficient ways for reducing power and energy. For ultra-low voltage operation, a new circuit technique which allows bulk CMOS circuits to work in the sub-0. 5V supply territory is presented. The threshold voltage of the slow PMOS transistor is controlled dynamically to get a lower threshold voltage during the active mode. Due to the reduced threshold voltage, switching speed becomes faster while active leakage current is increased. A technique to dynamically manage active leakage current is presented. Energy reduction resulting from using the proposed structure is demonstrated through simulations of different circuits with different levels of complexity. As technology scales, the mounting leakage current and degraded noise immunity impact performance especially that of high performance dynamic circuits. Dual threshold technology shows a good potential for leakage reduction while meeting performance goals. A model for optimally selecting threshold voltages and transistor sizes in wide fan-in dynamic circuits is presented. On the circuit level, a novel circuit level technique which handles the trade-off between noise immunity and energy dissipation for wide fan-in dynamic circuits is presented. Energy efficiency of the proposed wide fan-in dynamic circuit is further enhanced through efficient low voltage operation. Another direct consequence of technology scaling is the growing impact of interconnect parasitics and process variations on performance. Traditionally, worst case process, parasitics, and environmental conditions are considered. Designing for worst case guarantees a fail-safe operation but requires a large delay and voltage margins. This large margin can be recovered if the design can adapt to the actual silicon conditions. Dynamic voltage scaling is considered a key enabler in reducing such margin. An on-chip process identifier to recover the margin required due to process variations is described. The proposed architecture adjusts supply voltage using a hybrid between the one-time voltage setting and the continuous monitoring modes of operation. The interconnect impact on delay is minimized through a novel adaptive voltage scaling architecture. The proposed system recovers the large delay and voltage margins required by conventional systems by closely tracking the actual critical path at anytime. By tracking the actual critical path, the proposed system is robust and more energy efficient compared to both the conventional open-loop and closed-loop systems

    Design Techniques for Energy-Quality Scalable Digital Systems

    Get PDF
    Energy efficiency is one of the key design goals in modern computing. Increasingly complex tasks are being executed in mobile devices and Internet of Things end-nodes, which are expected to operate for long time intervals, in the orders of months or years, with the limited energy budgets provided by small form-factor batteries. Fortunately, many of such tasks are error resilient, meaning that they can toler- ate some relaxation in the accuracy, precision or reliability of internal operations, without a significant impact on the overall output quality. The error resilience of an application may derive from a number of factors. The processing of analog sensor inputs measuring quantities from the physical world may not always require maximum precision, as the amount of information that can be extracted is limited by the presence of external noise. Outputs destined for human consumption may also contain small or occasional errors, thanks to the limited capabilities of our vision and hearing systems. Finally, some computational patterns commonly found in domains such as statistics, machine learning and operational research, naturally tend to reduce or eliminate errors. Energy-Quality (EQ) scalable digital systems systematically trade off the quality of computations with energy efficiency, by relaxing the precision, the accuracy, or the reliability of internal software and hardware components in exchange for energy reductions. This design paradigm is believed to offer one of the most promising solutions to the impelling need for low-energy computing. Despite these high expectations, the current state-of-the-art in EQ scalable design suffers from important shortcomings. First, the great majority of techniques proposed in literature focus only on processing hardware and software components. Nonetheless, for many real devices, processing contributes only to a small portion of the total energy consumption, which is dominated by other components (e.g. I/O, memory or data transfers). Second, in order to fulfill its promises and become diffused in commercial devices, EQ scalable design needs to achieve industrial level maturity. This involves moving from purely academic research based on high-level models and theoretical assumptions to engineered flows compatible with existing industry standards. Third, the time-varying nature of error tolerance, both among different applications and within a single task, should become more central in the proposed design methods. This involves designing “dynamic” systems in which the precision or reliability of operations (and consequently their energy consumption) can be dynamically tuned at runtime, rather than “static” solutions, in which the output quality is fixed at design-time. This thesis introduces several new EQ scalable design techniques for digital systems that take the previous observations into account. Besides processing, the proposed methods apply the principles of EQ scalable design also to interconnects and peripherals, which are often relevant contributors to the total energy in sensor nodes and mobile systems respectively. Regardless of the target component, the presented techniques pay special attention to the accurate evaluation of benefits and overheads deriving from EQ scalability, using industrial-level models, and on the integration with existing standard tools and protocols. Moreover, all the works presented in this thesis allow the dynamic reconfiguration of output quality and energy consumption. More specifically, the contribution of this thesis is divided in three parts. In a first body of work, the design of EQ scalable modules for processing hardware data paths is considered. Three design flows are presented, targeting different technologies and exploiting different ways to achieve EQ scalability, i.e. timing-induced errors and precision reduction. These works are inspired by previous approaches from the literature, namely Reduced-Precision Redundancy and Dynamic Accuracy Scaling, which are re-thought to make them compatible with standard Electronic Design Automation (EDA) tools and flows, providing solutions to overcome their main limitations. The second part of the thesis investigates the application of EQ scalable design to serial interconnects, which are the de facto standard for data exchanges between processing hardware and sensors. In this context, two novel bus encodings are proposed, called Approximate Differential Encoding and Serial-T0, that exploit the statistical characteristics of data produced by sensors to reduce the energy consumption on the bus at the cost of controlled data approximations. The two techniques achieve different results for data of different origins, but share the common features of allowing runtime reconfiguration of the allowed error and being compatible with standard serial bus protocols. Finally, the last part of the manuscript is devoted to the application of EQ scalable design principles to displays, which are often among the most energy- hungry components in mobile systems. The two proposals in this context leverage the emissive nature of Organic Light-Emitting Diode (OLED) displays to save energy by altering the displayed image, thus inducing an output quality reduction that depends on the amount of such alteration. The first technique implements an image-adaptive form of brightness scaling, whose outputs are optimized in terms of balance between power consumption and similarity with the input. The second approach achieves concurrent power reduction and image enhancement, by means of an adaptive polynomial transformation. Both solutions focus on minimizing the overheads associated with a real-time implementation of the transformations in software or hardware, so that these do not offset the savings in the display. For each of these three topics, results show that the aforementioned goal of building EQ scalable systems compatible with existing best practices and mature for being integrated in commercial devices can be effectively achieved. Moreover, they also show that very simple and similar principles can be applied to design EQ scalable versions of different system components (processing, peripherals and I/O), and to equip these components with knobs for the runtime reconfiguration of the energy versus quality tradeoff

    Adaptive and hybrid schemes for efficient parallel squaring and cubing units

    Get PDF
    Squaring (X2) and cubing (X3) units are special operations of multiplication used in many applications, such as image compression, equalization, decoding and demodulation, 3D graphics, scientific computing, artificial neural networks, logarithmic number system, and multimedia application. They can also be an efficient way to compute other basic functions. Therefore, improving their performances is a goal for many researchers. This dissertation will discuss modification to algorithms to compute parallel squaring and cubing units in both signed and unsigned representation. After that, truncated technique is applied to improve their performance. Each unit is modeled and estimated to obtain its area, delay by using linear evaluation model. A C program was written to generate Hardware Description Language files for each unit. These units are simulated and verified in simulation. Moreover, area, delay, and power consumption are calculated for each unit and compared with those ones in previous approaches for both Virtex 5 Xilinx FPGA and IBM 65nm ASIC technologies

    Low power techniques and architectures for multicarrier wireless receivers

    Get PDF

    Project and development of hardware accelerators for fast computing in multimedia processing

    Get PDF
    2017 - 2018The main aim of the present research work is to project and develop very large scale electronic integrated circuits, with particular attention to the ones devoted to image processing applications and the related topics. In particular, the candidate has mainly investigated four topics, detailed in the following. First, the candidate has developed a novel multiplier circuit capable of obtaining floating point (FP32) results, given as inputs an integer value from a fixed integer range and a set of fixed point (FI) values. The result has been accomplished exploiting a series of theorems and results on a number theory problem, known as Bachet’s problem, which allows the development of a new Distributed Arithmetic (DA) based on 3’s partitions. This kind of application results very fit for filtering applications working on an integer fixed input range, such in image processing applications, in which the pixels are coded on 8 bits per channel. In fact, in these applications the main problem is related to the high area and power consumption due to the presence of many Multiply and Accumulate (MAC) units, also compromising real-time requirements due to the complexity of FP32 operations. For these reasons, FI implementations are usually preferred, at the cost of lower accuracies. The results for the single multiplier and for a filter of dimensions 3x3 show respectively delay of 2.456 ns and 4.7 ns on FPGA platform and 2.18 ns and 4.426 ns on 90nm std_cell TSMC 90 nm implementation. Comparisons with state-of-the-art FP32 multipliers show a speed increase of up to 94.7% and an area reduction of 69.3% on FPGA platform. ... [edited by Author]XXXI cicl

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Lossy Polynomial Datapath Synthesis

    No full text
    The design of the compute elements of hardware, its datapath, plays a crucial role in determining the speed, area and power consumption of a device. The building blocks of datapath are polynomial in nature. Research into the implementation of adders and multipliers has a long history and developments in this area will continue. Despite such efficient building block implementations, correctly determining the necessary precision of each building block within a design is a challenge. It is typical that standard or uniform precisions are chosen, such as the IEEE floating point precisions. The hardware quality of the datapath is inextricably linked to the precisions of which it is composed. There is, however, another essential element that determines hardware quality, namely that of the accuracy of the components. If one were to implement each of the official IEEE rounding modes, significant differences in hardware quality would be found. But in the same fashion that standard precisions may be unnecessarily chosen, it is typical that components may be constructed to return one of these correctly rounded results, where in fact such accuracy is far from necessary. Unfortunately if a lesser accuracy is permissible then the techniques that exist to reduce hardware implementation cost by exploiting such freedom invariably produce an error with extremely difficult to determine properties. This thesis addresses the problem of how to construct hardware to efficiently implement fixed and floating-point polynomials while exploiting a global error freedom. This is a form of lossy synthesis. The fixed-point contributions include resource minimisation when implementing mutually exclusive polynomials, the construction of minimal lossy components with guaranteed worst case error and a technique for efficient composition of such components. Contributions are also made to how a floating-point polynomial can be implemented with guaranteed relative error.Open Acces
    corecore