12,002 research outputs found

    Embedding of Virtual Network Requests over Static Wireless Multihop Networks

    Full text link
    Network virtualization is a technology of running multiple heterogeneous network architecture on a shared substrate network. One of the crucial components in network virtualization is virtual network embedding, which provides a way to allocate physical network resources (CPU and link bandwidth) to virtual network requests. Despite significant research efforts on virtual network embedding in wired and cellular networks, little attention has been paid to that in wireless multi-hop networks, which is becoming more important due to its rapid growth and the need to share these networks among different business sectors and users. In this paper, we first study the root causes of new challenges of virtual network embedding in wireless multi-hop networks, and propose a new embedding algorithm that efficiently uses the resources of the physical substrate network. We examine our algorithm's performance through extensive simulations under various scenarios. Due to lack of competitive algorithms, we compare the proposed algorithm to five other algorithms, mainly borrowed from wired embedding or artificially made by us, partially with or without the key algorithmic ideas to assess their impacts.Comment: 22 page

    Impact of Processing-Resource Sharing on the Placement of Chained Virtual Network Functions

    Full text link
    Network Function Virtualization (NFV) provides higher flexibility for network operators and reduces the complexity in network service deployment. Using NFV, Virtual Network Functions (VNF) can be located in various network nodes and chained together in a Service Function Chain (SFC) to provide a specific service. Consolidating multiple VNFs in a smaller number of locations would allow decreasing capital expenditures. However, excessive consolidation of VNFs might cause additional latency penalties due to processing-resource sharing, and this is undesirable, as SFCs are bounded by service-specific latency requirements. In this paper, we identify two different types of penalties (referred as "costs") related to the processingresource sharing among multiple VNFs: the context switching costs and the upscaling costs. Context switching costs arise when multiple CPU processes (e.g., supporting different VNFs) share the same CPU and thus repeated loading/saving of their context is required. Upscaling costs are incurred by VNFs requiring multi-core implementations, since they suffer a penalty due to the load-balancing needs among CPU cores. These costs affect how the chained VNFs are placed in the network to meet the performance requirement of the SFCs. We evaluate their impact while considering SFCs with different bandwidth and latency requirements in a scenario of VNF consolidation.Comment: Accepted for publication in IEEE Transactions on Cloud Computin

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Leveraging Semantic Web Technologies for Managing Resources in a Multi-Domain Infrastructure-as-a-Service Environment

    Full text link
    This paper reports on experience with using semantically-enabled network resource models to construct an operational multi-domain networked infrastructure-as-a-service (NIaaS) testbed called ExoGENI, recently funded through NSF's GENI project. A defining property of NIaaS is the deep integration of network provisioning functions alongside the more common storage and computation provisioning functions. Resource provider topologies and user requests can be described using network resource models with common base classes for fundamental cyber-resources (links, nodes, interfaces) specialized via virtualization and adaptations between networking layers to specific technologies. This problem space gives rise to a number of application areas where semantic web technologies become highly useful - common information models and resource class hierarchies simplify resource descriptions from multiple providers, pathfinding and topology embedding algorithms rely on query abstractions as building blocks. The paper describes how the semantic resource description models enable ExoGENI to autonomously instantiate on-demand virtual topologies of virtual machines provisioned from cloud providers and are linked by on-demand virtual connections acquired from multiple autonomous network providers to serve a variety of applications ranging from distributed system experiments to high-performance computing

    Server resource dimensioning and routing of service function chain in NFV network architectures

    Get PDF
    The Network Function Virtualization (NFV) technology aims at virtualizing the network service with the execution of the single service components in Virtual Machines activated on Commercial-off-the-shelf (COTS) servers. Any service is represented by the Service Function Chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the instantiation of VNF instances (VNFI) that in general are software components executed on Virtual Machines. In this paper we cope with the routing and resource dimensioning problem in NFV architectures. We formulate the optimization problem and due to its NP-hard complexity, heuristics are proposed for both cases of offline and online traffic demand. We show how the heuristics works correctly by guaranteeing a uniform occupancy of the server processing capacity and the network link bandwidth. A consolidation algorithm for the power consumption minimization is also proposed. The application of the consolidation algorithm allows for a high power consumption saving that however is to be paid with an increase in SFC blocking probability

    NETEMBED: A Network Resource Mapping Service for Distributed Applications

    Full text link
    Emerging configurable infrastructures such as large-scale overlays and grids, distributed testbeds, and sensor networks comprise diverse sets of available computing resources (e.g., CPU and OS capabilities and memory constraints) and network conditions (e.g., link delay, bandwidth, loss rate, and jitter) whose characteristics are both complex and time-varying. At the same time, distributed applications to be deployed on these infrastructures exhibit increasingly complex constraints and requirements on resources they wish to utilize. Examples include selecting nodes and links to schedule an overlay multicast file transfer across the Grid, or embedding a network experiment with specific resource constraints in a distributed testbed such as PlanetLab. Thus, a common problem facing the efficient deployment of distributed applications on these infrastructures is that of "mapping" application-level requirements onto the network in such a manner that the requirements of the application are realized, assuming that the underlying characteristics of the network are known. We refer to this problem as the network embedding problem. In this paper, we propose a new approach to tackle this combinatorially-hard problem. Thanks to a number of heuristics, our approach greatly improves performance and scalability over previously existing techniques. It does so by pruning large portions of the search space without overlooking any valid embedding. We present a construction that allows a compact representation of candidate embeddings, which is maintained by carefully controlling the order via which candidate mappings are inserted and invalid mappings are removed. We present an implementation of our proposed technique, which we call NETEMBED – a service that identify feasible mappings of a virtual network configuration (the query network) to an existing real infrastructure or testbed (the hosting network). We present results of extensive performance evaluation experiments of NETEMBED using several combinations of real and synthetic network topologies. Our results show that our NETEMBED service is quite effective in identifying one (or all) possible embeddings for quite sizable queries and hosting networks – much larger than what any of the existing techniques or services are able to handle.National Science Foundation (CNS Cybertrust 0524477, NSF CNS NeTS 0520166, NSF CNS ITR 0205294, EIA RI 0202067
    corecore