20,194 research outputs found

    Creating Tailored and Adaptive Network Services with the Open Orchestration C-RAN Framework

    Full text link
    Next generation wireless communications networks will leverage software-defined radio and networking technologies, combined with cloud and fog computing. A pool of resources can then be dynamically allocated to create personalized network services (NSs). The enabling technologies are abstraction, virtualization and consolidation of resources, automatization of processes, and programmatic provisioning and orchestration. ETSI's network functions virtualization (NFV) management and orchestration (MANO) framework provides the architecture and specifications of the management layers. We introduce OOCRAN, an open-source software framework and testbed that extends existing NFV management solutions by incorporating the radio communications layers. This paper presents OOCRAN and illustrates how it monitors and manages the pool of resources for creating tailored NSs. OOCRAN can automate NS reconfiguration, but also facilitates user control. We demonstrate the dynamic deployment of cellular NSs and discuss the challenges of dynamically creating and managing tailored NSs on shared infrastructure.Comment: IEEE 5G World Forum 201

    Overlay networks for smart grids

    Get PDF

    Optimizing Service Differentiation Scheme with Sized-based Queue Management in DiffServ Networks

    Get PDF
    In this paper we introduced Modified Sized-based Queue Management as a dropping scheme that aims to fairly prioritize and allocate more service to VoIP traffic over bulk data like FTP as the former one usually has small packet size with less impact to the network congestion. In the same time, we want to guarantee that this prioritization is fair enough for both traffic types. On the other hand we study the total link delay over the congestive link with the attempt to alleviate this congestion as much as possible at the by function of early congestion notification. Our M-SQM scheme has been evaluated with NS2 experiments to measure the packets received from both and total link-delay for different traffic. The performance evaluation results of M-SQM have been validated and graphically compared with the performance of other three legacy AQMs (RED, RIO, and PI). It is depicted that our M-SQM outperformed these AQMs in providing QoS level of service differentiation.Comment: 10 pages, 9 figures, 1 table, Submitted to Journal of Telecommunication

    An adaptive policy-based framework for network services management

    No full text
    This paper presents a framework for specifying policies for the management of network services. Although policy-based management has been the subject of considerable research, proposed solutions are often restricted to condition-action rules, where conditions are matched against incoming traffic flows. This results in static policy configurations where manual intervention is required to cater for configuration changes and to enable policy deployment. The framework presented in this paper supports automated policy deployment and flexible event triggers to permit dynamic policy configuration. While current research focuses mostly on rules for low-level device configuration, significant challenges remain to be addressed in order to:a) provide policy specification and adaptation across different abstraction layers; and, b) provide tools and services for the engineering of policy-driven systems. In particular, this paper focuses on solutions for dynamic adaptation of policies in response to changes within the managed environment. Policy adaptation includes both dynamically changing policy parameters and reconfiguring the policy objects. Access control for network services is also discussed.Accepted versio

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    Future wireless applications for a networked city: services for visitors and residents

    Get PDF
    Future wireless networks will offer near-ubiquitous high-bandwidth communications to mobile users. In addition, the accurate position of users will be known, either through network services or via additional sensing devices such as GPS. These characteristics of future mobile environments will enable the development of location-aware and, more generally, context-sensitive applications. In an attempt to explore the system, application, and user issues associated with the development and deployment of such applications, we began to develop the Lancaster GUIDE system in early 1997, finishing the first phase of the project in 1999. In its entirety, GUIDE comprises a citywide wireless network based on 802.11, a context-sensitive tour guide application with, crucially, significant content, and a set of supporting distributed systems services. Uniquely in the field, GUIDE has been evaluated using members of the general public, and we have gained significant experience in the design of usable context-sensitive applications. We focus on the applications and supporting infrastructure that will form part of GUIDE II, the successor to the GUIDE system. These developments are designed to expand GUIDE outside the tour guide domain, and to provide applications and services for residents of the city of Lancaster, offering a vision of the future mobile environments that will emerge once ubiquitous high-bandwidth coverage is available in most cities

    HIL: designing an exokernel for the data center

    Full text link
    We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    Q-Andrew: a consolidated QOS management framework

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2008As redes IP convergentes são compostas por uma diversidade de tecnologias que suportam múltiplos tipos de serviços com diferentes características. Cada fabricante de equipamento activo de rede usa sistemas de manutenção proprietários, incompatíveis com equipamentos de outros fabricantes. Para um operador de telecomunicações a gestão da Qualidade de Serviço, numa rede composta por vários fabricantes, é uma tarefa complexa e dispendiosa. Algumas tarefas requerem configuração manual para garantir a compatibilidade entre configurações de equipamentos de fabricantes diferentes. Melhorar a resposta operacional e reduzir os custos de operação nestas circunstâncias é apenas possível com a consolidação da gestão de rede. Para responder a este desafio, propomos: Um conjunto de mecanismos geradores de configurações de Qualidade de Serviço, consistentes entre equipamentos de diversos fabricantes; A definição de um modelo abstracto de representação destas configurações, reutilizável em futuras aproximações de gestão consolidada de rede; Por fim, descrevemos uma aplicação de demonstração onde algumas das propostas apresentadas são concretizadas, tendo como objectivo futuro a sua utilização numa rede real de um operador de telecomunicações nacional, onde são utilizados equipamentos de diversos fabricantes.Converged IP networks consist of diverse technologies and support both legacy and emerging services. Different vendors use separate management systems to achieve similar goals. Manual provisioning today represents a large portion of the total effort required to manage a complex IP network. A consolidated Quality-of-Service policy is difficult to implement in heterogeneous networks. Creating and maintaining such policies is very demanding in terms of operations. For this reason, reducing operational costs while improving Quality-of-Service Management is only possible through a consolidated approach to network management. To leverage operations in converged IP networks, we propose the following: A mechanism to automatically generate consistent configurations across a network with equipment from different vendors; A framework definition such that network element configurations can be specified using a common model; Applying some of the methods proposed to an application that can be used in a real network with diverse technologies and equipment vendors
    corecore