442 research outputs found

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Towards Distributed BPEL Orchestrations

    Get PDF
    Web services are imposing as the technology to integrate highly heterogeneous systems. BPEL, the standard technology to compose services, assumes a single âorchestratorâ that controls the execution flow and coordinates the interactions with selected services. This centralized approach simplifies the coordination among components, but it is also a too heavy constraint. To this end, the paper introduces the idea of distributed orchestrations and presents a proposal to couple BPEL and distributed execution in mobile settings. The approach âexemplified on a simple case studyâ transforms a centralized BPEL process into a set of coordinated processes. An explicit meta-model and graph transformation supply the formal grounding to obtain a set of related processes, and to add the communication infrastructure among the newly created processes. The paper also presents a communication infrastructure based on tuple spaces to make the different orchestrators interact in mobile contexts. Keywords: WS-BPEL, Grap

    A constraint-based approach to quality assurance in service choreographies.

    Get PDF
    Knowledge about the quality characteristics (QoS) of service com- positions is crucial for determining their usability and economic value. Ser- vice quality is usually regulated using Service Level Agreements (SLA). While end-to-end SLAs are well suited for request-reply interactions, more complex, decentralized, multiparticipant compositions (service choreographies) typ- ically involve multiple message exchanges between stateful parties and the corresponding SLAs thus encompass several cooperating parties with interde- pendent QoS. The usual approaches to determining QoS ranges structurally (which are by construction easily composable) are not applicable in this sce- nario. Additionally, the intervening SLAs may depend on the exchanged data. We present an approach to data-aware QoS assurance in choreographies through the automatic derivation of composable QoS models from partici- pant descriptions. Such models are based on a message typing system with size constraints and are derived using abstract interpretation. The models ob- tained have multiple uses including run-time prediction, adaptive participant selection, or design-time compliance checking. We also present an experimen- tal evaluation and discuss the benefits of the proposed approach

    Ontology-based composition and matching for dynamic cloud service coordination

    Get PDF
    Recent cross-organisational software service offerings, such as cloud computing, create higher integration needs. In particular, services are combined through brokers and mediators, solutions to allow individual services to collaborate and their interaction to be coordinated are required. The need to address dynamic management - caused by cloud and on-demand environments - can be addressed through service coordination based on ontology-based composition and matching techniques. Our solution to composition and matching utilises a service coordination space that acts as a passive infrastructure for collaboration where users submit requests that are then selected and taken on by providers. We discuss the information models and the coordination principles of such a collaboration environment in terms of an ontology and its underlying description logics. We provide ontology-based solutions for structural composition of descriptions and matching between requested and provided services

    Secure FaaS orchestration in the fog: how far are we?

    Get PDF
    AbstractFunction-as-a-Service (FaaS) allows developers to define, orchestrate and run modular event-based pieces of code on virtualised resources, without the burden of managing the underlying infrastructure nor the life-cycle of such pieces of code. Indeed, FaaS providers offer resource auto-provisioning, auto-scaling and pay-per-use billing at no costs for idle time. This makes it easy to scale running code and it represents an effective and increasingly adopted way to deliver software. This article aims at offering an overview of the existing literature in the field of next-gen FaaS from three different perspectives: (i) the definition of FaaS orchestrations, (ii) the execution of FaaS orchestrations in Fog computing environments, and (iii) the security of FaaS orchestrations. Our analysis identify trends and gaps in the literature, paving the way to further research on securing FaaS orchestrations in Fog computing landscapes

    WSCDL to WSBPEL: A Case Study of ATL-based Transformation

    Get PDF
    The ATLAS Transformation Language (ATL) is a hybrid transformation language that combines declarative and imperative programming elements and provides means to define model transformations. Most transformations using ATL reported in the literature show a simplified use of ATL, and often involve a single transformation. However, in more realistic situations, multiple transformations may be necessary, especially in case the original input/output models are not represented in the metametamodeling representation expected by the transformation engine. In this paper, we discuss a model transformation from service choreography (WSCDL) to service orchestration (WSBPEL), which cannot be performed in a single ATL transformation due to the mismatch between the concrete XML syntax of these languages and the metametamodeling representation expected by the ATL transformation engine. This requires auxiliary transformations in which this mismatch is resolved. In principle, the required auxiliary transformations can be implemented using XSLT or a general-purpose programming language like Java. However, in our case study, we evaluate the use of ATL to perform these transformations. We exploit ATL by leveraging the ATL's XML\ud injection and the XML extraction mechanisms to perform the overall transformation in terms of a transformation chain

    TUPLESPACE-BASED INFRASTRUCTURE FOR DECENTRALIZED ENACTMENT OF BPEL PROCESSES

    Get PDF
    Business processes in WS-BPEL are a manifestation of the two-level-programming paradigm where remote-accessible Web services are composed to potentially complex orchestrations. WSBPEL processes are executed by Workflow Management Systems that navigate through the process\u27 activities and interact with the orchestrated services. While Web service technology enables interactions with remote services, process navigation is typically done in a centralized manner. Especially in scenarios of complex interactions between multiple distributed process participants, this way of process enactment has several drawbacks. In this paper, we outline those drawbacks and propose an alternative approach to execution of BPEL processes in a distributed, decentralized manner
    corecore