25,945 research outputs found

    Sensor-Driven, Spatially Explicit Agent-Based Models

    Get PDF
    Conventionally, agent-based models (ABMs) are specified from well-established theory about the systems under investigation. For such models, data is only introduced to ensure the validity of the specified models. In cases where the underlying mechanisms of the system of interest are unknown, rich datasets about the system can reveal patterns and processes of the systems. Sensors have become ubiquitous allowing researchers to capture precise characteristics of entities in both time and space. The combination of data from in situ sensors to geospatial outputs provides a rich resource for characterising geospatial environments and entities on earth. More importantly, the sensor data can capture behaviours and interactions of entities allowing us to visualise emerging patterns from the interactions. However, there is a paucity of standardised methods for the integration of dynamic sensor data streams into ABMs. Further, only few models have attempted to incorporate spatial and temporal data dynamically from sensors for model specification, calibration and validation. This chapter documents the state of the art of methods for bridging the gap between sensor data observations and specification of accurate spatially explicit agent-based models. In addition, this work proposes a conceptual framework for dynamic validation of sensor-driven spatial ABMs to address the risk of model overfitting

    Data assimilation in slow-fast systems using homogenized climate models

    Full text link
    A deterministic multiscale toy model is studied in which a chaotic fast subsystem triggers rare transitions between slow regimes, akin to weather or climate regimes. Using homogenization techniques, a reduced stochastic parametrization model is derived for the slow dynamics. The reliability of this reduced climate model in reproducing the statistics of the slow dynamics of the full deterministic model for finite values of the time scale separation is numerically established. The statistics however is sensitive to uncertainties in the parameters of the stochastic model. It is investigated whether the stochastic climate model can be beneficial as a forecast model in an ensemble data assimilation setting, in particular in the realistic setting when observations are only available for the slow variables. The main result is that reduced stochastic models can indeed improve the analysis skill, when used as forecast models instead of the perfect full deterministic model. The stochastic climate model is far superior at detecting transitions between regimes. The observation intervals for which skill improvement can be obtained are related to the characteristic time scales involved. The reason why stochastic climate models are capable of producing superior skill in an ensemble setting is due to the finite ensemble size; ensembles obtained from the perfect deterministic forecast model lacks sufficient spread even for moderate ensemble sizes. Stochastic climate models provide a natural way to provide sufficient ensemble spread to detect transitions between regimes. This is corroborated with numerical simulations. The conclusion is that stochastic parametrizations are attractive for data assimilation despite their sensitivity to uncertainties in the parameters.Comment: Accepted for publication in Journal of the Atmospheric Science

    Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation

    Get PDF
    The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results

    Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    Get PDF
    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.Comment: 32 pages, 3 figure
    • …
    corecore