6,275 research outputs found

    A Hybrid Dynamic System Assessment Methodology for Multi-Modal Transportation-Electrification

    Get PDF
    In recent years, electrified transportation, be it in the form of buses, trains, or cars have become an emerging form of mobility. Electric vehicles (EVs), especially, are set to expand the amount of electric miles driven and energy consumed. Nevertheless, the question remains as to whether EVs will be technically feasible within infrastructure systems. Fundamentally, EVs interact with three interconnected systems: the (physical) transportation system, the electric power grid, and their supporting information systems. Coupling of the two physical systems essentially forms a nexus, the transportation-electricity nexus (TEN). This paper presents a hybrid dynamic system assessment methodology for multi-modal transportation-electrification. At its core, it utilizes a mathematical model which consists of a marked Petri-net model superimposed on the continuous time microscopic traffic dynamics and the electrical state evolution. The methodology consists of four steps: (1) establish the TEN structure; (2) establish the TEN behavior; (3) establish the TEN Intelligent Transportation-Energy System (ITES) decision-making; and (4) assess the TEN performance. In the presentation of the methodology, the Symmetrica test case is used throughout as an illustrative example. Consequently, values for several measures of performance are provided. This methodology is presented generically and may be used to assess the effects of transportation-electrification in any city or area; opening up possibilities for many future studies

    Enhancement of Charging Resource Utilization of Electric Vehicle Fast Charging Station with Heterogeneous EV Users

    Get PDF
    This thesis presents innovative charging resource allocation and coordination strategies that maximize the limited charging resources at FCS with heterogeneous EV users. It allows opportunistic EV users (OEVs) to exploit available charging resources with dynamic event-driven charging resource allocation and coordination strategies apart from primary EV users (PEVs) (registered or scheduled EV users). Moreover, developed strategies focus on the limited charging resources that are allocated for primary/ registered EV users (PEVs) of the FCS who access the FCS with specific privileges according to prior agreements. But the available resources are not optimally utilized due to various uncertainties associated with the EV charging process such as EV mobility-related uncertainties, EVSE failures, energy price uncertainties, etc. Developed strategies consider that idle chargers and vacant space for EVs at the FCS is an opportunity for further utilizing them with OEVs using innovative charging resource coordination strategies. This thesis develops an FCS-centric performance assessment framework that evaluates the performance of developed strategies in terms of charging resource utilization, charging completion and the quality of service (QoS) aspects of EV users. To evaluate QoS of EV charging process, various parameters such as EV blockage, charging process preemptage, mean waiting time, mean charging time, availability of FCS, charging reliability, etc are derived and analyzed. In addition, the developed innovative charging resource allocation and coordination strategies with resource aggregation and demand elasticity further enhance the charging resource utilization while providing a high QoS in EV charging for both PEVs and OEVs.publishedVersio

    Reactivity controlled compression ignition engine: Pathways towards commercial viability

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/).Reactivity-controlled compression ignition (RCCI) is a promising energy conversion strategy to increase fuel efficiency and reduce nitrogen oxide (NOx) and soot emissions through improved in-cylinder combustion process. Considering the significant amount of conducted research and development on RCCI concept, the majority of the work has been performed under steady-state conditions. However, most thermal propulsion systems in transportation applications require operation under transient conditions. In the RCCI concept, it is crucial to investigate transient behavior over entire load conditions in order to minimize the engine-out emissions and meet new real driving emissions (RDE) legislation. This would help further close the gap between steady-state and transient operation in order to implement the RCCI concept into mass production. This work provides a comprehensive review of the performance and emissions analyses of the RCCI engines with the consideration of transient effects and vehicular applications. For this purpose, various simulation and experimental studies have been reviewed implementing different control strategies like control-oriented models particularly in dual-mode operating conditions. In addition, the application of the RCCI strategy in hybrid electric vehicle platforms using renewable fuels is also discussed. The discussion of the present review paper provides important insights for future research on the RCCI concept as a commercially viable energy conversion strategy for automotive applications.Peer reviewe

    Energy management and shifting stability control for a novel dual input clutchless transmission system

    Full text link
    © 2019 Elsevier Ltd A dual input clutchless transmission system based on automated manual transmission (AMT) structure is developed for pure electric vehicles. An energy management strategy (EMS) is proposed to determine the power distribution between two motors and the optimal gear state. A mathematical model is built to minimize the energy consumption of the motors at each instant based on the motor efficiency maps. However, the proposed EMS in line with other energy-oriented strategies often result in excessive gear shifts and compromised drivability. To avoid the undesired gear shift, a shifting stabilizer is built in the EMS objective function to improve the shift quality. Accordingly, to achieve a balance between the energy consumption and the drivability, a multi-objective optimization method is adopted to reduce the unnecessary shift events while minimizing energy consumption. Two driving cycles representing typical daily driving conditions are used to demonstrate the effectiveness of the proposed system in terms of energy efficiency and shifting stability

    Energy storage systems and power conversion electronics for e-transportation and smart grid

    Get PDF
    The special issue “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid” on MDPI Energies presents 20 accepted papers, with authors from North and South America, Asia, Europe and Africa, related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification and on the evolution of the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for smart grid as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) levels are proposed
    • …
    corecore