197 research outputs found

    Fractional kVA Rating PWM Converter Doubly Fed Variable Speed Electric Generator Systems:An Overview in 2020

    Get PDF
    Variable speed generator systems (VSGs) are at work in the now 600 GW installed wind power plants (parks). Also, they are used as vehicular and on ground stand-alone generators. VSGs imply full kVA rating PWM converters in permanent magnet (PM) or in electrically excited synchronous or in cage rotor inductance generators. But, to reduce cost in absence of PMs at a reasonable initial cost (weight) and efficiency, the fractional kVA PWM converter doubly fed induction generators (DFIG) cover now about 50% of all installed power in wind generators. The present paper reviews recent progress in DFIG and various forms of brushless DFGs (doubly fed generators) characterized in terms of topology, design, performance and advanced control for healthy and faulty load conditions in the hope of inspiring new, hopefully ground breakings, progress for wind and hydro energy conversion and in vehicular and on the ground stand-alone generator applications

    An improved rotor speed observer for standalone brushless doubly-fed induction generator under unbalanced and nonlinear loads

    Get PDF
    The conventional control methods for brushless doubly-fed induction generator (BDFIG) normally employ mechanical sensors to acquire the information of rotor speed, which brings many disadvantages in the cost, complexity, reliability, and so on. This paper presents an improved rotor speed observer (RSO) for the sensorless operation of a standalone BDFIG, which is based on the power winding (PW) voltage and control winding (CW) current. In order to eliminate the impact of unbalanced and nonlinear loads on the RSO, second-order generalized integrators (SOGIs) and low-pass filters (LPFs) are introduced to pre-filter the PW voltage and CW current, respectively. Through comprehensive parameter design, the response speed of the improved RSO will be not lower than that of the basic RSO with ensuring the filtering effect of these additional filters. In addition, the proposed RSO is independent to machine parameters except the pole pairs. Comprehensive experiments are conducted and results verify the proposed improved RSO applied to the standalone BDFIG. Also, the applicability of the proposed RSO on another dual-electrical-port machine, DFIG, is confirmed by simulation results

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    Static Eccentricity Fault Detection in Brushless Doubly Fed Induction Machines based on MotorCurrent Signature Analysis

    Get PDF
    In this paper a new rotor eccentricity fault detection method is proposed for the first time for Brushless Doubly Fed Induction Machines (BDFIMs). Due to the fact that BDFIMs are attractive alternatives to doubly fed induction machines for wind power generation, paying attention to their fault diagnosis is essential. Existing fault detection methods for conventional induction machines can not be directly applied to the BDFIM due to its special rotor structure and stator winding configurations as well as the complex magnetic fields. In this paper a new fault detection technique based on stator current harmonic analysis is proposed to detect rotor eccentricity faults in the BDFIM. The validity of the proposed fault detection method is verified by analytical winding function method and finite element analysis on a prototype D180 BDFIM. Index Terms—Brushless doubly fed induction machines, Nested-loop rotor slot harmonics, Motor current signature analysis, Winding function method, Finite element analysis, Static eccentricity fault
    • …
    corecore