313 research outputs found

    Mechanical engineering challenges in humanoid robotics

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 36-39).Humanoid robots are artificial constructs designed to emulate the human body in form and function. They are a unique class of robots whose anthropomorphic nature renders them particularly well-suited to interact with humans in a world designed for humans. The present work examines a subset of the plethora of engineering challenges that face modem developers of humanoid robots, with a focus on challenges that fall within the domain of mechanical engineering. The challenge of emulating human bipedal locomotion on a robotic platform is reviewed in the context of the evolutionary origins of human bipedalism and the biomechanics of walking and running. Precise joint angle control bipedal robots and passive-dynamic walkers, the two most prominent classes of modem bipedal robots, are found to have their own strengths and shortcomings. An integration of the strengths from both classes is likely to characterize the next generation of humanoid robots. The challenge of replicating human arm and hand dexterity with a robotic system is reviewed in the context of the evolutionary origins and kinematic structure of human forelimbs. Form-focused design and function-focused design, two distinct approaches to the design of modem robotic arms and hands, are found to have their own strengths and shortcomings. An integration of the strengths from both approaches is likely to characterize the next generation of humanoid robots.by Peter Guang Yi Lu.S.B

    Humanoid Walking Robot

    Get PDF
    Our project is focused on research and development of the application of Hydro Muscles to biologically inspired humanoid robots. Our team designed, researched, and developed a bio-inspired, bipedal walking robot to simulate the human gait cycle. The walking motion is actuated by Hydro Muscles, which are soft artificial muscles that are driven pneumatically or hydraulically to contract and expand longitudinally. These artificial muscles were were modeled to match mass scaled actuation of human muscles on a lower limb skeletal model to create a biologically authentic gait. Further extensions of this project would explore this robots potential for clinical, prosthetic, military defense, and other applications

    Pneumatic muscle actuators within robotic and mechatronic systems

    Get PDF

    Reinforcement Learning Control for Biped Robot Walking on Uneven Surfaces

    Full text link

    Biomimetic leg design and passive dynamics of Dolomedes aquaticus

    Get PDF
    Spiders provide working models for agile, efficient miniature passive-dynamic robots. Joints are extended by haemoplymph (hydraulic) pressure and flexed by muscle-tendon systems. Muscle contraction in the prosoma leads to an increase in hydraulic pressure and subsequently leg extension. Analysis of body kinematics the New Zealand fishing spider, Dolomedes aquaticus indicates that elastic plates around the joints absorb energy from the ground reaction force when the force vector points backwards (i.e. would decelerate the spider’s body in the direction of locomotion) and release it to provide forward thrust as the leg swings backwards. In addition to improving energy efficiency, this mechanism improves stability by passively absorbing energy from unpredictable foot-ground impacts during locomotion on uneven terrain. These principles guided an iterative design methodology using a combination of 3D modelling software and 3D printing techniques. I compared and contrasted compliant joints made of a variety of plastic materials. The final 3D-printed spider leg prototype has a stiff ABS exoskeleton joined by a compliant polypropylene backbone. The entire structure envelopes a soft silicone pneumatic bladder. FEA analysis was used to determine the ideal shape and behavior of the pneumatic bladder to actuate the exoskeleton. The spider leg can be flexed and contracted depending on the input pressure. To laterally actuate this pneumatic spider leg I designed and developed a fabrication system that uses vacuum injection molding to produce an integrated mesh sleeve/elastomer pneumatic actuator. I designed an apparatus to measure pressure and contraction of silicone and latex pneumatic muscles when inflated. I analyzed the non-linear pressure-contraction relationships of silicone versus latex pneumatic muscles, and also derived force-contraction relationships. From efficiency studies, both media muscles proved to be inefficient and the measuring apparatus needs to be more robust to prevent leaking air. The fabrication process still offers the possibility of a quick and efficient method of creating pneumatic muscles. A spider-like robot that implements these pneumatic muscles and pneumatic leg design could be used to explore the efficiency and stability of passive dynamic legged locomotion in spider-like robots

    Towards a Smart Semi-Active Prosthetic Leg: Preliminary Assessment and Testing

    Get PDF
    This paper presents a development of a semi-active prosthetic knee, which can work in both active and passive modes based on the energy required during the gait cycle of various activities of daily livings (ADLs). The prosthetic limb is equipped with various sensors to measure the kinematic and kinetic parameters of both prosthetic limbs. This prosthetic knee is designed to be back-drivable in passive mode to provide a potential use in energy regeneration when there negative energy across the knee joint. Preliminary test has been performed on transfemoral amputee in passive mode to provide some insight to the amputee/prosthesis interaction and performance with the designed prosthetic knee
    corecore