214 research outputs found

    Data Detection and Code Channel Allocation for Frequency-Domain Spread ACO-OFDM Systems Over Indoor Diffuse Wireless Channels

    Get PDF
    Future optical wireless communication systems promise to provide high-speed data transmission in indoor diffuse environments. This paper considers frequency-domain spread asymmetrically clipped optical orthogonal frequency-division multiplexing (ACOOFDM) systems in indoor diffuse channels and aims to develop efficient data detection and code channel allocation schemes. By exploiting the frequency-domain spread concept, a linear multi-code detection scheme is proposed to maximize the signal to interference plus noise ratio (SINR) at the receiver. The achieved SINR and bit error ratio (BER) performance are analyzed. A computationally efficient code channel allocation algorithm is proposed to improve the BER performance of the frequency-domain spread ACO-OFDM system. Numerical results show that the frequency-domain spread ACO-OFDM system outperforms conventional ACO-OFDM systems in indoor diffuse channels. Moreover, the proposed linear multi-code detection and code channel allocation algorithm can improve the performance of optical peak-to-average power ratio (PAPR

    NORM Technique based PAPR Reduction in MC-CDMA Systems

    Get PDF
    Multicarrier code division multiple access (MC-CDMA) is one of the promising technologies for future-generation wireless networks. It offers high data rates, protection against frequency-selective fading and efficient utilization of the spectrum. The peak to average power ratio (PAPR) is very high in MCCDMA systems. The partial transmit sequence technique (PTS) and the selective mapping technique (SLM) reduce the PAPR with more computational complexity. In this study, the NORM technique was used for PAPR reduction in MC-CDMA systems. The performance of NORM was analyzed with PTS and SLM in terms of cumulative complementary distribution, power saving gain, amplifier efficiency, computational complexity and bit error rate. Simulation results showed that NORM has better PAPR reduction with less computational complexity

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    Multicarrier communication systems with low sensibility to nonlinear amplification

    Get PDF
    Actualment estem entrant a una nova era de la informació amb gran demanda de sistemes de comunicació sense fils. Nous serveis com dades i video requereixen transmissions fiables d'alta velocitat, fins i tot en escenaris d'alta mobilitat. A més a més, la dificultat d'assignar el limitat espectre radioelèctric juntament amb la necessitat d'incrementar el temps de vida de les bateries dels terminals mòbils, requereix el diseny de transceptors que usin la potència i l'ampla de banda disponibles de manera eficient. Les comunicacions multiportadora basades en OFDM són capaces de satisfer la majoria d'aquests requeriments. Però, entre altres reptes, reduir la sensibilitat a la amplificació no-lineal és un factor clau durant el diseny. En aquesta tesi doctoral s'analitza la sensibilitat dels sistemes multiportadora basats en OFDM a l'amplificació no-lineal i es consideren formes eficients per superar aquest problema. La tesi s'enfoca principalment al problema de reduir les fluctuacions de l'envolupant del senyal transmès. En aquest sentit es presenta també un estudi de les mètriques de l'envolupant del senyal, PAPR i CM. A més a més, basant-nos en l'anàlisis presentat es proposen noves tècniques per sistemes OFDM i MC-SS. Per MC-SS, també es tracta el diseny d'una tècnica de postprocessament en forma de detector multiusuari per canals no-lineals.Actualmente estamos entrando en una nueva era de la información donde se da una gran demanda de sistemas de comunicación inalámbricos. Nuevos servicios como datos y vídeo requieren transmisiones fiables de alta velocidad, incluso en escenarios de alta movilidad. Además, la dificultad de asignar el limitado espectro radioeléctrico junto con la necesidad de incrementar el tiempo de vida de las baterías de los terminales móviles, requiere el diseño de transceptores que usen eficientemente la potencia y el ancho de banda disponibles. Las comunicaciones multiportadora basadas en OFDM son capaces de satisfacer la mayoría de dichos requerimientos. Sin embargo, entre otros retos, reducir su sensibilidad a la amplificación no-lineal es un factor clave durante el diseño. En esta tesis se analiza la sensibilidad de los sistemas multiportadora basados en OFDM a la amplificación no-lineal y se consideran formas eficientes para superar dicho problema. La tesis se enfoca principalmente al problema de reducir las fluctuaciones de la envolvente. En este sentido también se presenta un estudio de las métricas de la señal, PAPR y CM. Además, basándonos en el análisis presentado se proponen nuevas técnicas para OFDM y MC-SS. Para MC-SS, también se trata el diseño de un detector multiusuario para canales no-lineales.We are now facing a new information age with high demand of wireless communication systems. New services such as data and video require achieving reliable high-speed transmissions even in high mobility scenarios. Moreover, the difficulty to allocate so many wireless communication systems in the limited frequency band in addition to the demand for long battery life requires designing spectrum and power efficient transceivers. Multicarrier communications based on OFDM are known to fulfill most of the requirements of such systems. However, among other challenges, reducing the sensitivity to nonlinear amplification has become a design key. In this thesis the sensitivity of OFDM-based multicarrier systems to nonlinear amplification is analyzed and efficient ways to overcome this problem are considered. The focus is mainly on the problem of reducing the envelope fluctuations. Therefore, a study of the signal metrics, namely PAPR and CM, is also presented. From the presented analysis, several new techniques for OFDM and MC-SS are proposed. For MC-SS, the design of a post-processing technique in the form of a multiuser detector for nonlinearly distorted MC-SS symbols is also addressed

    An Overview of PAPR Reduction Techniques for an MC-CDMA System

    Get PDF
    Abstract-MC-CDMA is the most promising technique for high bit rate and high capacity transmission in wireless communication. One of the challenging issues of MC-CDMA system is very high PAPR due to large number of sub-carriers which reduces the system efficiency. This paper describes the various PAPR reduction techniques for MC-CDMA system. Criterion for the selection of PAPR reduction technique and also the comparison between the reduction techniques has been discussed

    Low density spreading multiple access

    Get PDF
    The need for ubiquitous coverage and the increasing demand for high data rate services, keeps constant pressure on the cellular network infrastructure. There has been intense research to improve the system spectral efficiency and coverage, and a significant part of this effort focused on developing and optimizing the multiple access techniques. One such technique that has been recently proposed is the low density spreading (LDS), which manages the multiple access interference to offer efficient and low complexity multiuser detection. The LDS technique has shown a promising performance as a multiple access technique for cellular systems. This chapter will give an overview on the LDS multiple access technique. The motivations for the LDS design will be highlighted by comparing it to conventional spreading techniques, including brief history of the early work on LDS. Furthermore, a background on the design of LDS in multicarrier communications, such as signatures design, a belief propagation multiuser detection, etc., will be presented along with the challenges and opportunities associated with the multicarrier LDS multiple access

    Intelligent genetic algorithms for next-generation broadband multi-carrier CDMA wireless networks

    Get PDF
    This dissertation proposes a novel intelligent system architecture for next-generation broadband multi-carrier CDMA wireless networks. In our system, two novel and similar intelligent genetic algorithms, namely Minimum Distance guided GAs (MDGAs) are invented for both peak-to-average power ratio (PAPR) reduction at the transmitter side and multi-user detection (MUD) at the receiver side. Meanwhile, we derive a theoretical BER performance analysis for the proposed MC-CDMA system in A WGN channel. Our analytical results show that the theoretical BER performance of synchronized MC-CDMA system is the same as that of the synchronized DS-CDMA system which is also used as a theoretical guidance of our novel MUD receiver design. In contrast to traditional GAs, our MDGAs start with a balanced ratio of exploration and exploitation which is maintained throughout the process. In our algorithms, a new replacement strategy is designed which increases significantly the convergence rate and reduces dramatically computational complexity as compared to the conventional GAs. The simulation results demonstrate that, if compared to those schemes using exhaustive search and traditional GAs, (1) our MDGA-based P APR reduction scheme achieves 99.52% and 50+% reductions in computational complexity, respectively; (2) our MDGA-based MUD scheme achieves 99.54% and 50+% reductions in computational complexity, respectively. The use of one core MDGA solution for both issues can ease the hardware design and dramatically reduce the implementation cost in practice.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Multi-carrier transmission techniques toward flexible and efficient wireless communication systems

    Get PDF
    制度:新 ; 文部省報告番号:甲2562号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2008/3/15 ; 早大学位記番号:新470
    corecore