2,511 research outputs found

    Gaussian functional shapes-based type-II fuzzy membership-based cluster protocol for energy harvesting IoT networks

    Get PDF
    With the advancements in Internet of Things (IoT) technologies, energy harvesting IoT devices are becoming significantly important. These tiny IoT devices can harvest bounded energy, thus need an efficient protocol to conserve the energy in more efficient manner. From the review, it is found that the development of an efficient energy efficient protocol for energy harvesting IoT is still an open area of research. It is found that fuzzy based energy harvesting IoTs has shown significant improvement over the existing protocols. However, the fuzzy logic suffers from the data uncertainty issue. Therefore, in this paper, Gaussian functional shapes-based type-II fuzzy membership function is used to elect the cluster heads among the IoT devices to reduce the energy consumption of energy harvest IoTs. Thereafter, inter-cluster data aggregation is used. Finally, the communication between the elected cluster heads and the cloud servers or sink. Extensive experiments are drawn by considering the existing and the proposed protocols for energy harvesting IoTs. Comparative analysis reveals that the proposed type-II fuzzy membership function-based protocol outperforms the existing protocols in terms of bandwidth analysis, throughput, conserve energy, network lifetime, and average consumed energy

    Computational Intelligence Inspired Data Delivery for Vehicle-to-Roadside Communications

    Get PDF
    We propose a vehicle-to-roadside communication protocol based on distributed clustering where a coalitional game approach is used to stimulate the vehicles to join a cluster, and a fuzzy logic algorithm is employed to generate stable clusters by considering multiple metrics of vehicle velocity, moving pattern, and signal qualities between vehicles. A reinforcement learning algorithm with game theory based reward allocation is employed to guide each vehicle to select the route that can maximize the whole network performance. The protocol is integrated with a multi-hop data delivery virtualization scheme that works on the top of the transport layer and provides high performance for multi-hop end-to-end data transmissions. We conduct realistic computer simulations to show the performance advantage of the protocol over other approaches

    An Intelligent Trust Cloud Management Method for Secure Clustering in 5G enabled Internet of Medical Things

    Full text link
    5G edge computing enabled Internet of Medical Things (IoMT) is an efficient technology to provide decentralized medical services while Device-to-device (D2D) communication is a promising paradigm for future 5G networks. To assure secure and reliable communication in 5G edge computing and D2D enabled IoMT systems, this paper presents an intelligent trust cloud management method. Firstly, an active training mechanism is proposed to construct the standard trust clouds. Secondly, individual trust clouds of the IoMT devices can be established through fuzzy trust inferring and recommending. Thirdly, a trust classification scheme is proposed to determine whether an IoMT device is malicious. Finally, a trust cloud update mechanism is presented to make the proposed trust management method adaptive and intelligent under an open wireless medium. Simulation results demonstrate that the proposed method can effectively address the trust uncertainty issue and improve the detection accuracy of malicious devices

    A new method to improve transmission efficiency under multi-link interference situation

    Get PDF
    An endeavor has been made to expand the transmission productivity and system lifetime of a wireless sensor network (WSN) by grouping technique utilizing Fuzzy rationale. Here, the cluster head (CH) is chosen dependent on the Fuzzy rationale. Upgrade of lifetime for the nodes working in WSN is a significant issue that should be settled for expanding the framework productivity and execution. The procedure of clustering has discovered huge number of advantages concerning accomplishing framework effectiveness and least vitality utilization. The conventions utilized in a canny WSN should support greatest transmission productivity and give most extreme system lifetime from the used calculation that is actually endeavored to be accomplished through this technique. The first node dead (FND) and the lifetime of the system utilizing the fuzzy logic in the proposed work are contrasted and four different mechanisms. Both FND and lifetime are seen as better in the present work which gives a productive way to deal with WSN

    The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    Get PDF
    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Comparison and Analysis on AI Based Data Aggregation Techniques in Wireless Networks

    Get PDF
    In modern era WSN, data aggregation technique is the challenging area for researchers from long time. Numbers of researchers have proposed neural network (NN) and fuzzy logic based data aggregation methods in Wireless Environment. The main objective of this paper is to analyse the existing work on artificial intelligence (AI) based data aggregation techniques in WSNs. An attempt has been made to identify the strength and weakness of AI based techniques.In addition to this, a modified protocol is designed and developed.And its implementation also compared with other existing approaches ACO and PSO. Proposed approach is better in terms of network lifetime and throughput of the networks. In future an attempt can be made to overcome the existing challenges during data aggregation in WSN using different AI and Meta heuristic based techniques

    Energy efficient clustering and routing optimization model for maximizing lifetime of wireless sensor network

    Get PDF
    Recently, the wide adoption of WSNs (Wireless-Sensor-Networks) is been seen for provision non-real time and real-time application services such as intelligent transportation and health care monitoring, intelligent transportation etc. Provisioning these services requires energy-efficient WSN. The clustering technique is an efficient mechanism that plays a main role in reducing the energy consumption of WSN. However, the existing model is designed considering reducing energy- consumption of the sensor-device for the homogenous network. However, it incurs energy-overhead (EO) between cluster-head (CH). Further, maximizing coverage time is not considered by the existing clustering approach considering heterogeneous networks affecting lifetime performance. In order to overcome these research challenges, this work presents an energy efficient clustering and routing optimization (EECRO) model adopting cross-layer design for heterogeneous networks. The EECRO uses channel gain information from the physical layer and TDMA based communication is adopted for communication among both intra-cluster and inter-cluster communication. Further, clustering and routing optimization are presented to bring a good trade-off among minimizing the energy of CH, enhancing coverage time and maximizing the lifetime of sensor-network (SN). The experiments are conducted to estimate the performance of EECRO over the existing model. The significant-performance is attained by EECRO over the existing model in terms of minimizing routing and communication overhead and maximizing the lifetime of WSNs
    • …
    corecore