50,039 research outputs found

    Neuronal Response Clamp

    Get PDF
    Responses of individual neurons to ongoing input are highly variable, reflecting complex threshold dynamics. Experimental access to this threshold dynamics is required in order to fully characterize neuronal input–output relationships. The challenge is practically intractable using present day experimental paradigms due to the cumulative, non-linear interactions involved. Here we introduce the Neuronal Response Clamp, a closed-loop technique enabling control over the instantaneous response probability of the neuron. The potential of the technique is demonstrated by showing direct access to threshold dynamics of cortical neuron in vitro using extracellular recording and stimulation, over timescales ranging from seconds to many hours. Moreover, the method allowed us to expose the sensitivity of threshold dynamics to spontaneous input from the network in which the neuron is embedded. The Response-Clamp technique follows the rationale of the voltage-clamp and dynamic-clamp approaches, extending it to the neuron's spiking behavior. The general framework offered here is applicable in the study of other neural systems, beyond the single neuron level

    A dynamic clamp protocol to artificially modify cell capacitance

    Get PDF
    Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.Peer Reviewe

    Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation

    Full text link
    Cortical neurons are subject to sustained and irregular synaptic activity which causes important fluctuations of the membrane potential (Vm). We review here different methods to characterize this activity and its impact on spike generation. The simplified, fluctuating point-conductance model of synaptic activity provides the starting point of a variety of methods for the analysis of intracellular Vm recordings. In this model, the synaptic excitatory and inhibitory conductances are described by Gaussian-distributed stochastic variables, or colored conductance noise. The matching of experimentally recorded Vm distributions to an invertible theoretical expression derived from the model allows the extraction of parameters characterizing the synaptic conductance distributions. This analysis can be complemented by the matching of experimental Vm power spectral densities (PSDs) to a theoretical template, even though the unexpected scaling properties of experimental PSDs limit the precision of this latter approach. Building on this stochastic characterization of synaptic activity, we also propose methods to qualitatively and quantitatively evaluate spike-triggered averages of synaptic time-courses preceding spikes. This analysis points to an essential role for synaptic conductance variance in determining spike times. The presented methods are evaluated using controlled conductance injection in cortical neurons in vitro with the dynamic-clamp technique. We review their applications to the analysis of in vivo intracellular recordings in cat association cortex, which suggest a predominant role for inhibition in determining both sub- and supra-threshold dynamics of cortical neurons embedded in active networks.Comment: 9 figures, Journal of Neuroscience Methods (in press, 2008

    The touch and zap method for in vivo whole-cell patch recording of intrinsic and visual responses of cortical neurons and Glial cells

    Get PDF
    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique

    StdpC: a modern dynamic clamp

    Get PDF
    With the advancement of computer technology many novel uses of dynamic clamp have become possible. We have added new features to our dynamic clamp software StdpC (“Spike timing-dependent plasticity Clamp”) allowing such new applications while conserving the ease of use and installation of the popular earlier Dynclamp 2/4 package. Here, we introduce the new features of a waveform generator, freely programmable Hodgkin–Huxley conductances, learning synapses, graphic data displays, and a powerful scripting mechanism and discuss examples of experiments using these features. In the first example we built and ‘voltage clamped’ a conductance based model cell from a passive resistor–capacitor (RC) circuit using the dynamic clamp software to generate the voltage-dependent currents. In the second example we coupled our new spike generator through a burst detection/burst generation mechanism in a phase-dependent way to a neuron in a central pattern generator and dissected the subtle interaction between neurons, which seems to implement an information transfer through intraburst spike patterns. In the third example, making use of the new plasticity mechanism for simulated synapses, we analyzed the effect of spike timing-dependent plasticity (STDP) on synchronization revealing considerable enhancement of the entrainment of a post-synaptic neuron by a periodic spike train. These examples illustrate that with modern dynamic clamp software like StdpC, the dynamic clamp has developed beyond the mere introduction of artificial synapses or ionic conductances into neurons to a universal research tool, which might well become a standard instrument of modern electrophysiology

    Confocal Imaging of Transmembrane Voltage by SEER of di-8-ANEPPS

    Get PDF
    Imaging, optical mapping, and optical multisite recording of transmembrane potential (Vm) are essential for studying excitable cells and systems. The naphthylstyryl voltage-sensitive dyes, including di-8-ANEPPS, shift both their fluorescence excitation and emission spectra upon changes in Vm. Accordingly, they have been used for monitoring Vm in nonratioing and both emission and excitation ratioing modes. Their changes in fluorescence are usually much less than 10% per 100 mV. Conventional ratioing increases sensitivity to between 3 and 15% per 100 mV. Low sensitivity limits the value of these dyes, especially when imaged with low light systems like confocal scanners. Here we demonstrate the improvement afforded by shifted excitation and emission ratioing (SEER) as applied to imaging membrane potential in flexor digitorum brevis muscle fibers of adult mice. SEER—the ratioing of two images of fluorescence, obtained with different excitation wavelengths in different emission bands—was implemented in two commercial confocal systems. A conventional pinhole scanner, affording optimal setting of emission bands but less than ideal excitation wavelengths, achieved a sensitivity of up to 27% per 100 mV, nearly doubling the value found by conventional ratioing of the same data. A better pair of excitation lights should increase the sensitivity further, to 35% per 100 mV. The maximum acquisition rate with this system was 1 kHz. A fast “slit scanner” increased the effective rate to 8 kHz, but sensitivity was lower. In its high-sensitivity implementation, the technique demonstrated progressive deterioration of action potentials upon fatiguing tetani induced by stimulation patterns at \u3e40 Hz, thereby identifying action potential decay as a contributor to fatigue onset. Using the fast implementation, we could image for the first time an action potential simultaneously at multiple locations along the t-tubule system. These images resolved the radially varying lag associated with propagation at a finite velocity

    Fusion pore conductance to determine the effects of mutating the structure of influenza virus hemagglutinin

    Full text link
    Enveloped viruses, such as influenza, infect cells by fusing their viral envelope with the cell membrane. The fusion pore is a macromolecular structure that links two membranes that are fusing. This paper will focus on the fusion pore initiated by the hemagglutinin (HA) protein of influenza virus upon infection of a host cell. Mutations in the HA protein can alter the time-course and structure of the developing fusion pore. While there is a clear relationship between HA's structure and the dynamic opening of the pore, the initial 3D structure of the fusion pore as it first begins to form remains unknown. We have attempted to address this unanswered question by measuring fusion pore conductance - a one dimensional electrophysiological measurement - at millisecond time resolution for both wild type and mutant HA proteins, using an automated patch clamp apparatus. Correlating the entire life history of the fusion pore with the snapshots we get from 3D imaging (cryo-electron tomography) would allow us to capture the initial pore opening, as well as better understand the effect that mutating the structure of HA has on influenza viral infection. At this time, we have not yet been able to observe the fusion event; however, we do believe that future experimentation using fusion pore conductance to investigate the effects of HA's structure on influenza viral infection are both promising and necessary
    • 

    corecore