8,372 research outputs found

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Stochastic Query Covering for Fast Approximate Document Retrieval

    Get PDF
    We design algorithms that, given a collection of documents and a distribution over user queries, return a small subset of the document collection in such a way that we can efficiently provide high-quality answers to user queries using only the selected subset. This approach has applications when space is a constraint or when the query-processing time increases significantly with the size of the collection. We study our algorithms through the lens of stochastic analysis and prove that even though they use only a small fraction of the entire collection, they can provide answers to most user queries, achieving a performance close to the optimal. To complement our theoretical findings, we experimentally show the versatility of our approach by considering two important cases in the context of Web search. In the first case, we favor the retrieval of documents that are relevant to the query, whereas in the second case we aim for document diversification. Both the theoretical and the experimental analysis provide strong evidence of the potential value of query covering in diverse application scenarios
    • …
    corecore