653 research outputs found

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Timing Closure in Chip Design

    Get PDF
    Achieving timing closure is a major challenge to the physical design of a computer chip. Its task is to find a physical realization fulfilling the speed specifications. In this thesis, we propose new algorithms for the key tasks of performance optimization, namely repeater tree construction; circuit sizing; clock skew scheduling; threshold voltage optimization and plane assignment. Furthermore, a new program flow for timing closure is developed that integrates these algorithms with placement and clocktree construction. For repeater tree construction a new algorithm for computing topologies, which are later filled with repeaters, is presented. To this end, we propose a new delay model for topologies that not only accounts for the path lengths, as existing approaches do, but also for the number of bifurcations on a path, which introduce extra capacitance and thereby delay. In the extreme cases of pure power optimization and pure delay optimization the optimum topologies regarding our delay model are minimum Steiner trees and alphabetic code trees with the shortest possible path lengths. We presented a new, extremely fast algorithm that scales seamlessly between the two opposite objectives. For special cases, we prove the optimality of our algorithm. The efficiency and effectiveness in practice is demonstrated by comprehensive experimental results. The task of circuit sizing is to assign millions of small elementary logic circuits to elements from a discrete set of logically equivalent, predefined physical layouts such that power consumption is minimized and all signal paths are sufficiently fast. In this thesis we develop a fast heuristic approach for global circuit sizing, followed by a local search into a local optimum. Our algorithms use, in contrast to existing approaches, the available discrete layout choices and accurate delay models with slew propagation. The global approach iteratively assigns slew targets to all source pins of the chip and chooses a discrete layout of minimum size preserving the slew targets. In comprehensive experiments on real instances, we demonstrate that the worst path delay is within 7% of its lower bound on average after a few iterations. The subsequent local search reduces this gap to 2% on average. Combining global and local sizing we are able to size more than 5.7 million circuits within 3 hours. For the clock skew scheduling problem we develop the first algorithm with a strongly polynomial running time for the cycle time minimization in the presence of different cycle times and multi-cycle paths. In practice, an iterative local search method is much more efficient. We prove that this iterative method maximizes the worst slack, even when restricting the feasible schedule to certain time intervals. Furthermore, we enhance the iterative local approach to determine a lexicographically optimum slack distribution. The clock skew scheduling problem is then generalized to allow for simultaneous data path optimization. In fact, this is a time-cost tradeoff problem. We developed the first combinatorial algorithm for computing time-cost tradeoff curves in graphs that may contain cycles. Starting from the lowest-cost solution, the algorithm iteratively computes a descent direction by a minimum cost flow computation. The maximum feasible step length is then determined by a minimum ratio cycle computation. This approach can be used in chip design for several optimization tasks, e.g. threshold voltage optimization or plane assignment. Finally, the optimization routines are combined into a timing closure flow. Here, the global placement is alternated with global performance optimization. Netweights are used to penalize the length of critical nets during placement. After the global phase, the performance is improved further by applying more comprehensive optimization routines on the most critical paths. In the end, the clock schedule is optimized and clocktrees are inserted. Computational results of the design flow are obtained on real-world computer chips

    Energy-aware scheduling in distributed computing systems

    Get PDF
    Distributed computing systems, such as data centers, are key for supporting modern computing demands. However, the energy consumption of data centers has become a major concern over the last decade. Worldwide energy consumption in 2012 was estimated to be around 270 TWh, and grim forecasts predict it will quadruple by 2030. Maximizing energy efficiency while also maximizing computing efficiency is a major challenge for modern data centers. This work addresses this challenge by scheduling the operation of modern data centers, considering a multi-objective approach for simultaneously optimizing both efficiency objectives. Multiple data center scenarios are studied, such as scheduling a single data center and scheduling a federation of several geographically-distributed data centers. Mathematical models are formulated for each scenario, considering the modeling of their most relevant components such as computing resources, computing workload, cooling system, networking, and green energy generators, among others. A set of accurate heuristic and metaheuristic algorithms are designed for addressing the scheduling problem. These scheduling algorithms are comprehensively studied, and compared with each other, using statistical tools to evaluate their efficacy when addressing realistic workloads and scenarios. Experimental results show the designed scheduling algorithms are able to significantly increase the energy efficiency of data centers when compared to traditional scheduling methods, while providing a diverse set of trade-off solutions regarding the computing efficiency of the data center. These results confirm the effectiveness of the proposed algorithmic approaches for data center infrastructures.Los sistemas informáticos distribuidos, como los centros de datos, son clave para satisfacer la demanda informática moderna. Sin embargo, su consumo de energético se ha convertido en una gran preocupación. Se estima que mundialmente su consumo energético rondó los 270 TWh en el año 2012, y algunos prevén que este consumo se cuadruplicará para el año 2030. Maximizar simultáneamente la eficiencia energética y computacional de los centros de datos es un desafío crítico. Esta tesis aborda dicho desafío mediante la planificación de la operativa del centro de datos considerando un enfoque multiobjetivo para optimizar simultáneamente ambos objetivos de eficiencia. En esta tesis se estudian múltiples variantes del problema, desde la planificación de un único centro de datos hasta la de una federación de múltiples centros de datos geográficmentea distribuidos. Para esto, se formulan modelos matemáticos para cada variante del problema, modelado sus componentes más relevantes, como: recursos computacionales, carga de trabajo, refrigeración, redes, energía verde, etc. Para resolver el problema de planificación planteado, se diseñan un conjunto de algoritmos heurísticos y metaheurísticos. Estos son estudiados exhaustivamente y su eficiencia es evaluada utilizando una batería de herramientas estadísticas. Los resultados experimentales muestran que los algoritmos de planificación diseñados son capaces de aumentar significativamente la eficiencia energética de un centros de datos en comparación con métodos tradicionales planificación. A su vez, los métodos propuestos proporcionan un conjunto diverso de soluciones con diferente nivel de compromiso respecto a la eficiencia computacional del centro de datos. Estos resultados confirman la eficacia del enfoque algorítmico propuesto

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2
    corecore