229 research outputs found

    Tighter bounding volumes for better occlusion culling performance

    Get PDF
    Bounding volumes are used in computer graphics to approximate the actual geometric shape of an object in a scene. The main intention is to reduce the costs associated with visibility or interference tests. The bounding volumes most commonly used have been axis-aligned bounding boxes and bounding spheres. In this paper, we propose the use of discrete orientation polytopes (\kdops) as bounding volumes for the specific use of visibility culling. Occlusion tests are computed more accurately using \kdops, but most importantly, they are also computed more efficiently. We illustrate this point through a series of experiments using a wide range of data models under varying viewing conditions. Although no bounding volume works the best in every situation, {\kdops} are often the best, and also work very well in those cases where they are not the best, therefore they provide good results without having to analyze applications and different bounding volumes

    Efficient algorithms for occlusion culling and shadows

    Get PDF
    The goal of this research is to develop more efficient techniques for computing the visibility and shadows in real-time rendering of three-dimensional scenes. Visibility algorithms determine what is visible from a camera, whereas shadow algorithms solve the same problem from the viewpoint of a light source. In rendering, a lot of computational resources are often spent on primitives that are not visible in the final image. One visibility algorithm for reducing the overhead is occlusion culling, which quickly discards the objects or primitives that are obstructed from the view by other primitives. A new method is presented for performing occlusion culling using silhouettes of meshes instead of triangles. Additionally, modifications are suggested to occlusion queries in order to reduce their computational overhead. The performance of currently available graphics hardware depends on the ordering of input primitives. A new technique, called delay streams, is proposed as a generic solution to order-dependent problems. The technique significantly reduces the pixel processing requirements by improving the efficiency of occlusion culling inside graphics hardware. Additionally, the memory requirements of order-independent transparency algorithms are reduced. A shadow map is a discretized representation of the scene geometry as seen by a light source. Typically the discretization causes difficult aliasing issues, such as jagged shadow boundaries and incorrect self-shadowing. A novel solution is presented for suppressing all types of aliasing artifacts by providing the correct sampling points for shadow maps, thus fully abandoning the previously used regular structures. Also, a simple technique is introduced for limiting the shadow map lookups to the pixels that get projected inside the shadow map. The fillrate problem of hardware-accelerated shadow volumes is greatly reduced with a new hierarchical rendering technique. The algorithm performs per-pixel shadow computations only at visible shadow boundaries, and uses lower resolution shadows for the parts of the screen that are guaranteed to be either fully lit or fully in shadow. The proposed techniques are expected to improve the rendering performance in most real-time applications that use 3D graphics, especially in computer games. More efficient algorithms for occlusion culling and shadows are important steps towards larger, more realistic virtual environments.reviewe

    Object Hierarchies for Efficient Rendering

    Get PDF
    This thesis covers the efficient visualization of complex 3d scenes using various rendering methods such as photo-realistic and real-time rendering. Especially the important role of bounding volume hierarchies is discussed in detail in the context of illumination and visibility algorithms. We present a novel approach for automatic generation of object hierarchies and apply the resulting data structure to several rendering techniques. In the field of ray tracing we describe a novel ray acceleration method that combines objects hierarchies and regular grids. We demonstrate how radiosity computations may benefit from available scene hierarchies to determine the radiant flux between object clusters. Finally, we present an adaptive interactive rendering algorithm that may dramatically reduce the number of visibility tests in an occlusion culling framework for interactive real-time visualization.Diese Dissertation untersucht unterschiedliche Verfahren zur effizienten Visualisierung grosser dreidimensionaler Szenengeometrien, sowohl im Bereich des Photorealismus wie auch bei der Echtzeit-Visualisierung. Hierbei wird insbesondere die Nützlichkeit von Hüllkörperhierarchien bei der Beleuchtungsrechnung und bei der Beantwortung von Sichtbarkeitsfragen herausgearbeitet. Ein neuartiges, kostenbasiertes Verfahren zur automatischen Konstruktion von Objekthierarchien wird präsentiert sowie dessen Anwendung für alle gängigen Darstellungsverfahren. Zusätzlich beschreibt diese Disseration im Bereich Ray Tracing ein neues Verfahren zur Szenenstrukturierung, welches die Vorteile von Hüllkörperhierarchien und regulären Gittern kombiniert. Im Bereich der Radiosity wird gezeigt, wie sich Szenenhierarchien ideal zur Berechnung des Lichtflusses zwischen Objekt-Clustern nutzen lassen und im Bereich Echtzeit-Rendering wird ein adaptives Verfahren vorgestellt, dass die Zahl teurer Sichtbarkeitstests beim Occlusion-Culling deutlich reduziert

    Massive model visualization: An investigation into spatial partitioning

    Get PDF
    The current generation of visualization software is incapable of handling the interactive rendering of arbitrarily large models. While many solutions have been proposed for Massive Model Visualization, very few are able to achieve the full capabilities needed for a computer visualization solution. In most cases this is due to overly complex approaches that, while achieving impressive frame rates, make it virtually impossible to implement features like part manipulation. What is needed is a simple approach with rendering performance bounded by screen complexity not model size, with primitive traceability to the original model to facilitate part manipulation, and capability to be modified in near-real-time. This thesis introduces MMDr, a simple system to achieve interactive frame rates on extremely large data sets, while retaining support for most if not all the features required for a computer visualization solution

    Interactive inspection of complex multi-object industrial assemblies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.cad.2016.06.005The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection during these displacements. Our solution–based on the analysis of several existing view-dependent visualization schemes–uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the models involved are presented and discussed in the paper.Peer ReviewedPostprint (author's final draft

    Interactive isosurface ray tracing of time-varying tetrahedral volumes

    Get PDF
    Journal ArticleAbstract- We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes

    Conservative From-Point Visibility.

    Get PDF
    Visibility determination has been an important part of the computer graphics research for several decades. First studies of the visibility were hidden line removal algorithms, and later hidden surface removal algorithms. Today’s visibility determination is mainly concentrated on conservative, object level visibility determination techniques. Conservative methods are used to accelerate the rendering process when some exact visibility determination algorithm is present. The Z-buffer is a typical exact visibility determination algorithm. The Z-buffer algorithm is implemented in practically every modern graphics chip. This thesis concentrates on a subset of conservative visibility determination techniques. These techniques are sometimes called from-point visibility algorithms. They attempt to estimate a set of visible objects as seen from the current viewpoint. These techniques are typically used with real-time graphics applications such as games and virtual environments. Concentration is on the view frustum culling and occlusion culling. View frustum culling discards objects that are outside of the viewable volume. Occlusion culling algorithms try to identify objects that are not visible because they are behind some other objects. Also spatial data structures behind the efficient implementations of view frustum culling and occlusion culling are reviewed. Spatial data structure techniques like maintaining of dynamic scenes and exploiting spatial and temporal coherences are reviewed.1. Introduction.............................................................................................................1 2. Visibility Problem...................................................................................................3 3. Scene Organization...............................................................................................10 3.1. Bounding Volume Hierarchies and Scene Graphs.................................10 3.2. Spatial Data Structures ...............................................................................13 3.3. Regular Grids...............................................................................................14 3.4. Quadtrees and Octrees ...............................................................................15 3.5. KD-Trees.......................................................................................................20 3.6. BSP-Trees......................................................................................................23 3.7. Exploiting Spatial and Temporal Coherence ..........................................27 3.8. Dynamic Scenes...........................................................................................30 3.9. Summary ......................................................................................................34 4. View Frustum Culling .........................................................................................35 4.1. View Frustum Construction ......................................................................36 4.2. View Frustum Test......................................................................................37 4.3. Hierarchical View Frustum Culling .........................................................41 4.4. Optimizations ..............................................................................................42 4.5. Summary ......................................................................................................44 5. Occlusion Culling .................................................................................................45 5.1. Fundamental Concepts...............................................................................45 5.2. Occluder Selection.......................................................................................46 5.3. Hardware Occlusion Queries....................................................................49 5.4. Object-Space Methods ................................................................................50 5.5. Image-Space Methods ................................................................................55 5.6. Summary ......................................................................................................64 6. Conclusion.............................................................................................................66 References .................................................................................................................... 7

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern
    corecore