2,290 research outputs found

    ECG Signal Reconstruction on the IoT-Gateway and Efficacy of Compressive Sensing Under Real-time Constraints

    Get PDF
    Remote health monitoring is becoming indispensable, though, Internet of Things (IoTs)-based solutions have many implementation challenges, including energy consumption at the sensing node, and delay and instability due to cloud computing. Compressive sensing (CS) has been explored as a method to extend the battery lifetime of medical wearable devices. However, it is usually associated with computational complexity at the decoding end, increasing the latency of the system. Meanwhile, mobile processors are becoming computationally stronger and more efficient. Heterogeneous multicore platforms (HMPs) offer a local processing solution that can alleviate the limitations of remote signal processing. This paper demonstrates the real-time performance of compressed ECG reconstruction on ARM's big.LITTLE HMP and the advantages they provide as the primary processing unit of the IoT architecture. It also investigates the efficacy of CS in minimizing power consumption of a wearable device under real-time and hardware constraints. Results show that both the orthogonal matching pursuit and subspace pursuit reconstruction algorithms can be executed on the platform in real time and yield optimum performance on a single A15 core at minimum frequency. The CS extends the battery life of wearable medical devices up to 15.4% considering ECGs suitable for wellness applications and up to 6.6% for clinical grade ECGs. Energy consumption at the gateway is largely due to an active internet connection; hence, processing the signals locally both mitigates system's latency and improves gateway's battery life. Many remote health solutions can benefit from an architecture centered around the use of HMPs, a step toward better remote health monitoring systems.Peer reviewedFinal Published versio

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    Self-tracking modes: reflexive self-monitoring and data practices

    Get PDF
    The concept of ‘self-tracking’ (also referred to as life-logging, the quantified self, personal analytics and personal informatics) has recently begun to emerge in discussions of ways in which people can voluntarily monitor and record specific features of their lives, often using digital technologies. There is evidence that the personal data that are derived from individuals engaging in such reflexive self-monitoring are now beginning to be used by actors, agencies and organisations beyond the personal and privatised realm. Self-tracking rationales and sites are proliferating as part of a ‘function creep’ of the technology and ethos of self-tracking. The detail offered by these data on individuals and the growing commodification and commercial value of digital data have led government, managerial and commercial enterprises to explore ways of appropriating self-tracking for their own purposes. In some contexts people are encouraged, ‘nudged’, obliged or coerced into using digital devices to produce personal data which are then used by others. This paper examines these issues, outlining five modes of self-tracking that have emerged: private, communal, pushed, imposed and exploited. The analysis draws upon theoretical perspectives on concepts of selfhood, citizenship, biopolitics and data practices and assemblages in discussing the wider sociocultural implications of the emergence and development of these modes of self-tracking

    Ubiquitous Healthcare Information System: Toward Crossing the Security Chasm

    Get PDF
    Ubiquitous healthcare information system is increasingly seen as a viable option for reducing the inherent time lag and inaccuracies in the traditional model of healthcare and promoting the delivery and practice of evidence-based healthcare―as and when needed―without any location and time constraints. Although promising, the realization of ubiquitous healthcare information system brings several threats and risks rooted in real-time collection, analysis, storage, transmission, and access of critical medical data. In this research, we address information security concerns pertaining to the paradigm of ubiquitous healthcare information system. To accomplish this we use National Institute for Standards and Technology’s (NIST’s) system development lifecycle model (SDLC) as the underlying framework to explore the current state of ubiquitous healthcare from the perspective of security. We then leverage the model to propose future research directions in this area. By implementing the NIST’s SDLC model in such a manner, we offer a different dynamic of healthcare security that has not been addressed in literature before

    Wearable Computing for Defence Automation : Opportunities and Challenges in 5G Network

    Get PDF
    Peer reviewedPublisher PD

    A Review on the Role of Nano-Communication in Future Healthcare Systems: A Big Data Analytics Perspective

    Get PDF
    This paper presents a first-time review of the open literature focused on the significance of big data generated within nano-sensors and nano-communication networks intended for future healthcare and biomedical applications. It is aimed towards the development of modern smart healthcare systems enabled with P4, i.e. predictive, preventive, personalized and participatory capabilities to perform diagnostics, monitoring, and treatment. The analytical capabilities that can be produced from the substantial amount of data gathered in such networks will aid in exploiting the practical intelligence and learning capabilities that could be further integrated with conventional medical and health data leading to more efficient decision making. We have also proposed a big data analytics framework for gathering intelligence, form the healthcare big data, required by futuristic smart healthcare to address relevant problems and exploit possible opportunities in future applications. Finally, the open challenges, future directions for researchers in the evolving healthcare domain, are presented

    Healthcare in the Smart Home: A Study of Past, Present and Future

    Get PDF
    Open Access journalUbiquitous or Pervasive Computing is an increasingly used term throughout the technology industry and is beginning to enter the consumer electronics space in its most recent form under the umbrella term: “Internet of Things”. One area of focus is in augmenting the home with intelligent, networked sensors and computers to create a Smart Home which opens a host of possibilities for the role of tomorrow’s dwelling. As the world’s population continues to live longer and consequently experience more medical-related ailments, at the same time institutional healthcare is struggling to cope, the role of the Smart Home becomes paramount to monitoring a dweller’s health and providing any necessary intervention. This study looks at the history of Smart Home Healthcare, current research areas, and potential areas of future investigation. Unique categorisations are presented in Activities of Daily Living (ADL) and Personal Sensors, and a thorough look at the application of Smart Home Healthcare is presented. Technology can augment traditional methods of healthcare delivery and in some cases completely replace it. Costs can be reduced and medical adherence can be increased, all of which contribute to a more sustainable and effective model of care
    • 

    corecore