724 research outputs found

    Fuzzy second order sliding mode control of a unified power flow controller

    Get PDF
    Purpose. This paper presents an advanced control scheme based on fuzzy logic and second order sliding mode of a unified power flow controller. This controller offers advantages in terms of static and dynamic operation of the power system such as the control law is synthesized using three types of controllers: proportional integral, and sliding mode controller and Fuzzy logic second order sliding mode controller. Their respective performances are compared in terms of reference tracking, sensitivity to perturbations and robustness. We have to study the problem of controlling power in electric system by UPFC. The simulation results show the effectiveness of the proposed method especiallyin chattering-free behavior, response to sudden load variations and robustness. All the simulations for the above work have been carried out using MATLAB / Simulink. Various simulations have given very satisfactory results and we have successfully improved the real and reactive power flows on a transmission lineas well as to regulate voltage at the bus where it is connected, the studies and illustrate the effectiveness and capability of UPFC in improving power.В настоящей статье представлена усовершенствованная схема управления, основанная на нечеткой логике и режиме скольжения второго порядка унифицированного контроллера потока мощности. Данный контроллер обладает преимуществами с точки зрения статической и динамической работы энергосистемы, например, закон управления синтезируется с использованием трех типов контроллеров: пропорционально-интегрального, контроллера скользящего режима и контроллера скользящего режима нечеткой логики второго порядка. Их соответствующие характеристики сравниваются с точки зрения отслеживания эталонов, чувствительности к возмущениям и надежности. Необходимо изучить проблему управления мощностью в энергосистеме с помощью унифицированного контроллера потока мощности (UPFC). Результаты моделирования показывают эффективность предложенного метода, особенно в отношении отсутствия вибрации, реакции на внезапные изменения нагрузки и устойчивости. Все расчеты для вышеуказанной работы были выполнены с использованием MATLAB/Simulink. Различные расчетные исследования дали весьма удовлетворительные результаты, и мы успешно улучшили потоки реальной и реактивной мощности на линии электропередачи, а также регулирование напряжения на шине, к которой она подключена, что позволяет изучить и проиллюстрировать эффективность и возможности UPFC для увеличения мощности

    A Reconfigurable FACTS System for University Laboratories

    Get PDF
    To fully understand the dynamic performance of the multiple flexible ac transmission systems (FACTS) devices, a hardware setup is needed to complement software simulation for university research laboratories. This paper presents the schematic and basic controls of a reconfigurable FACTS system that can be used to realize the major voltage-sourced-converter FACTS topologies: the StatCom, the static synchronous series compensator (SSSC), and the unified power-flow controller (UPFC). Furthermore, the state models and control algorithms for the FACTS devices are proposed. The digital signal processor (DSP)-based control system enables new control methods to be rapidly implemented. The comparison of the experimental and simulation results is also provided to verify the proposed controls. The paper culminates in a list of suggested experiments appropriate for an elective/graduate course in electric power systems

    Performance investigation of stand-alone induction generator based on STATCOM for wind power application

    Get PDF
    Self-Excited induction generators (SEIG) display a low voltage and frequency regulation due to variable applied load and input rotation speed. Current work presents a simulation and performance analysis of a three-phase wind-driven, SEIG connect to a three-phase load. In addition, an investigation of the dynamic operation of the induction generator from starting steady state until no-load operation. It is assumed that the input mechanical power is constant where the rotor of the SEIG rotates at a constant speed. The value of the excitation capacitance which is necessary to the operation of the induction generator also computed to ensure a smooth and self-excitation starting. The output voltage of the generator is adjusted by varying the reactive power injected by STATCOM. A 3-phase IGBT voltage source inverter with a fuel cell input supply is connected as STATCOM which is used to compensate for the reduction in the supply voltage and its frequency due to variation occurred in the applied loads. This work includes introducing a neuro-fuzzyy logic controller to enhance the performance of the SEIG by regulation the generated voltage and frequency The dynamic model of SEIG with STATCOM and loads are implemented using MATLAB/SIMULIN

    Two-leg three-phase inverter control for STATCOM and SSSC applications

    Get PDF
    Flexible ac transmission systems (FACTS) devices are attracting an increasing interest both in power system academic research and in electric utilities for their capabilities to improve steady-state performance as well as system stability. Several converter topologies for FACTS applications have been proposed in the recent literature, even if those based upon voltage source inverters (VSI) seem to be more attractive due to their intrinsic capability to rapidly respond to network changes such as perturbations subsequent to a fault and their property of being immune to resonance problem. In this paper, a new topology for inverter-based FACTS is proposed. This configuration, employing a two-leg three-phase inverter is employed for both series and parallel-connected reactive power compensators. The converter utilizes a modular topology for allowing a satisfaction of electronic components rating. A control strategy based on variable structure control technique with sliding mode is employed to track appropriate reference quantities. Design and control, as well as good tracking performances, are also verified through numerical simulations

    Novel Control and Harmonics Impact of PV Solar Farms

    Get PDF
    This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This technology, termed PV-STATCOM, is designed and developed for power factor correction in the networks of two utilities: Bluewater Power, Sarnia, and London Hydro. This thesis further describes for the first time, the harmonic impact studies on a utility distribution network in presence of the largest PV solar farm in Canada. This novel utilization of a PV-STATCOM for power factor correction of induction motor loads is demonstrated with (i) electromagnetic transient simulation in EMTDC/PSCAD software, (ii) real-time simulation studies in a Real Time Digital Simulator (RTDS), and (iii) Hardware-in-the-Loop (HIL) simulation studies of the PV-STATCOM controller implemented in a Digital Signal Processor based dSPACE system. Two different inverter control methods are employed - Hysteresis control and Pulse Width Modulation (PWM) control. The effectiveness of the PV-STATCOM controller is verified with different PV power outputs and at different loading conditions of the induction motor. The PV-STATCOM is able to improve the motor power factor to unity both during night and in the day even while generating real power. The harmonic impact studies of the 20 MW large scale PV solar farm and a 10 kW PV solar system are performed with the EMTDC/PSCAD model of two distribution feeders connecting to the solar farm in Bluewater Power, Sarnia. The models are validated with load flow results obtained from the CYME load flow software and Supervisory Control and Data Acquisition (SCADA) data available from the utility. The network resonance behaviors of the two feeders are analyzed using frequency scanning method in EMTDC/PSCAD. The measured harmonics data provided by Hydro One for three different power levels from the solar farm are utilized for harmonic impact studies. It is shown that even with worst case harmonics injection from both the large scale PV solar farm and a small PV solar system, the voltage harmonic distortion is within the limits specified by IEEE Standard 519

    Dynamic modelling and simulation of electric power systems using the Newton-Raphson method

    Get PDF
    The research work presented in this thesis is concerned with the development of a dynamic power flow computer algorithm using Newton's method. It addresses both the development of a positive sequence dynamic power flow algorithm for the dynamic study of balanced power systems and a fully-fledged three-phase dynamic power flow algorithm for the dynamic study of power systems exhibiting a significant degree of either structural or operational unbalance. As a prelude to the research work on dynamic power flows, a three-phase Newton-Raphson power flow algorithm in rectangular co-ordinates with conventional HVDC power plant modelling is presented in this thesis, emphasising the representation of converter control modes. The solution approach takes advantage of the strong numerical solutions for combined HVAC-HVDC systems, where power plant and operational imbalances are explicitly taken into account. The dynamic algorithm is particularly suited to carrying out long-term dynamic simulations and voltage stability assessments. Dynamic model representations of the power plants components and the load tap changing transformer are considered, and to widen the study range of dynamic voltage phenomena using this method, extensions have been made to include induction motor and polynomial load modelling features. Besides, reactive power compensators that base their modus operandi on the switching of power electronic valves, such as HVDC-VSC and the STATCOM are taken into account. The dynamic power flow algorithm has primarily been developed making use of the positive sequence and [dq] representations. Extensions are made to developing a three-phase power flows dynamic algorithm. Test cases for the various dynamic elements developed in this research are presented to show the versatility of the models and simulation tool, including a trip cascading event leading up to a wide-area voltage collaps. Comparisons with the output of a conventional transient stability program carried out where appropriate

    Novel Controls of Photovoltaic (PV) Solar Farms

    Get PDF
    Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive asset of solar farms remains highly unutilized. This thesis presents novel technologies for utilization of PV solar farm inverter in nighttime for providing multiple benefits to power systems, as well as accomplishing the same objectives during the daytime from the inverter capacity left after production of real power. The new technology transforms a solar farm inverter functionally into a dynamic reactive power compensator known as STATCOM, and termed PV-STATCOM. A novel coordinated control of PV-STATCOMs is proposed for loss reduction in a distribution network. The saved energy is substantial and can be used for powering several homes annually. The second novel PV-STATCOM control involves a temporary curtailment of real power production and utilization of the available reactive power capacity to prevent the instability of a critical induction motor load. The third novel PVSTATCOM control is employed to significantly enhance the power transfer limit of a long transmission line both in the nighttime and also during daytime even when the solar farm is producing a large amount of real power. A new technique for short circuit current management is developed for a conventional PV solar farm that can potentially solve the problem due to which several solar farms have been denied connectivity in Ontario. This thesis has contributed to two patent applications and presented first time implementations of another two filed patents. A generalized PV solar system model in EMTDC/PSCAD software has been developed and validated with manufacturer\u27s datasheet. Another contribution of this thesis is the first time harmonics impact study of the largest solar farm in Canada, in the distribution utility network of Bluewater Power, in Sarnia, Ontario. This thesis makes a strong case for relaxing the present grid codes to allow solar farms to exercise these novel controls. This technology can open up new avenues for solar farms to earn revenues apart from the sale of real power. This will require appropriate agreements between the regulators, network utilities, solar farm developers and inverter manufacturers
    corecore