244 research outputs found

    Strategic Learning for Active, Adaptive, and Autonomous Cyber Defense

    Full text link
    The increasing instances of advanced attacks call for a new defense paradigm that is active, autonomous, and adaptive, named as the \texttt{`3A'} defense paradigm. This chapter introduces three defense schemes that actively interact with attackers to increase the attack cost and gather threat information, i.e., defensive deception for detection and counter-deception, feedback-driven Moving Target Defense (MTD), and adaptive honeypot engagement. Due to the cyber deception, external noise, and the absent knowledge of the other players' behaviors and goals, these schemes possess three progressive levels of information restrictions, i.e., from the parameter uncertainty, the payoff uncertainty, to the environmental uncertainty. To estimate the unknown and reduce uncertainty, we adopt three different strategic learning schemes that fit the associated information restrictions. All three learning schemes share the same feedback structure of sensation, estimation, and actions so that the most rewarding policies get reinforced and converge to the optimal ones in autonomous and adaptive fashions. This work aims to shed lights on proactive defense strategies, lay a solid foundation for strategic learning under incomplete information, and quantify the tradeoff between the security and costs.Comment: arXiv admin note: text overlap with arXiv:1906.1218

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Game of Travesty: Decoy-based Psychological Cyber Deception for Proactive Human Agents

    Full text link
    The concept of cyber deception has been receiving emerging attention. The development of cyber defensive deception techniques requires interdisciplinary work, among which cognitive science plays an important role. In this work, we adopt a signaling game framework between a defender and a human agent to develop a cyber defensive deception protocol that takes advantage of the cognitive biases of human decision-making using quantum decision theory to combat insider attacks (IA). The defender deceives an inside human attacker by luring him to access decoy sensors via generators producing perceptions of classical signals to manipulate the human attacker's psychological state of mind. Our results reveal that even without changing the classical traffic data, strategically designed generators can result in a worse performance for defending against insider attackers in identifying decoys than the ones in the deceptive scheme without generators, which generate random information based on input signals. The proposed framework leads to fundamental theories in designing more effective signaling schemes
    • …
    corecore