218 research outputs found

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure

    Decentralized Computation Offloading for Multi-User Mobile Edge Computing: A Deep Reinforcement Learning Approach

    Full text link
    Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. Nevertheless, by considering a MEC system consisting of multiple mobile users with stochastic task arrivals and wireless channels in this paper, the design of computation offloading policies is challenging to minimize the long-term average computation cost in terms of power consumption and buffering delay. A deep reinforcement learning (DRL) based decentralized dynamic computation offloading strategy is investigated to build a scalable MEC system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn efficient computation offloading policies independently at each mobile user. Thus, powers of both local execution and task offloading can be adaptively allocated by the learned policies from each user's local observation of the MEC system. Numerical results are illustrated to demonstrate that efficient policies can be learned at each user, and performance of the proposed DDPG based decentralized strategy outperforms the conventional deep Q-network (DQN) based discrete power control strategy and some other greedy strategies with reduced computation cost. Besides, the power-delay tradeoff is also analyzed for both the DDPG based and DQN based strategies

    Deep Reinforcement Learning for Autonomous Internet of Things: Model, Applications and Challenges

    Full text link
    The Internet of Things (IoT) extends the Internet connectivity into billions of IoT devices around the world, where the IoT devices collect and share information to reflect status of the physical world. The Autonomous Control System (ACS), on the other hand, performs control functions on the physical systems without external intervention over an extended period of time. The integration of IoT and ACS results in a new concept - autonomous IoT (AIoT). The sensors collect information on the system status, based on which the intelligent agents in the IoT devices as well as the Edge/Fog/Cloud servers make control decisions for the actuators to react. In order to achieve autonomy, a promising method is for the intelligent agents to leverage the techniques in the field of artificial intelligence, especially reinforcement learning (RL) and deep reinforcement learning (DRL) for decision making. In this paper, we first provide a tutorial of DRL, and then propose a general model for the applications of RL/DRL in AIoT. Next, a comprehensive survey of the state-of-art research on DRL for AIoT is presented, where the existing works are classified and summarized under the umbrella of the proposed general DRL model. Finally, the challenges and open issues for future research are identified

    Deep Reinforcement Learning for Backscatter-Aided Data Offloading in Mobile Edge Computing

    Full text link
    Wireless network optimization has been becoming very challenging as the problem size and complexity increase tremendously, due to close couplings among network entities with heterogeneous service and resource requirements. By continuously interacting with the environment, deep reinforcement learning (DRL) provides a mechanism for different network entities to build knowledge and make autonomous decisions to improve network performance. In this article, we first review typical DRL approaches and recent enhancements. We then discuss the applications of DRL for mobile edge computing (MEC), which can be used for the low-power IoT devices, e.g., wireless sensors in healthcare monitoring, to offload computation workload to nearby MEC servers. To balance power consumption in offloading and computation, we propose a novel hybrid offloading model that exploits the complement operations of RF communications and low-power backscatter communications. The DRL framework is then customized to optimize the transmission scheduling and workload allocation in two communications technologies, which is shown to enhance the offloading performance significantly compared with existing schemes.Comment: 15 pages, 6 figures, 15 reference

    Vehicular Edge Computing via Deep Reinforcement Learning

    Full text link
    The smart vehicles construct Vehicle of Internet which can execute various intelligent services. Although the computation capability of the vehicle is limited, multi-type of edge computing nodes provide heterogeneous resources for vehicular services.When offloading the complicated service to the vehicular edge computing node, the decision should consider numerous factors.The offloading decision work mostly formulate the decision to a resource scheduling problem with single or multiple objective function and some constraints, and explore customized heuristics algorithms. However, offloading multiple data dependency tasks in a service is a difficult decision, as an optimal solution must understand the resource requirement, the access network, the user mobility, and importantly the data dependency. Inspired by recent advances in machine learning, we propose a knowledge driven (KD) service offloading decision framework for Vehicle of Internet, which provides the optimal policy directly from the environment. We formulate the offloading decision of multi-task in a service as a long-term planning problem, and explores the recent deep reinforcement learning to obtain the optimal solution. It considers the future data dependency of the following tasks when making decision for a current task from the learned offloading knowledge. Moreover, the framework supports the pre-training at the powerful edge computing node and continually online learning when the vehicular service is executed, so that it can adapt the environment changes and learns policy that are sensible in hindsight. The simulation results show that KD service offloading decision converges quickly, adapts to different conditions, and outperforms the greedy offloading decision algorithm.Comment: Preliminary report of ongoing wor

    Edge Intelligence for Energy-efficient Computation Offloading and Resource Allocation in 5G Beyond

    Full text link
    5G beyond is an end-edge-cloud orchestrated network that can exploit heterogeneous capabilities of the end devices, edge servers, and the cloud and thus has the potential to enable computation-intensive and delay-sensitive applications via computation offloading. However, in multi user wireless networks, diverse application requirements and the possibility of various radio access modes for communication among devices make it challenging to design an optimal computation offloading scheme. In addition, having access to complete network information that includes variables such as wireless channel state, and available bandwidth and computation resources, is a major issue. Deep Reinforcement Learning (DRL) is an emerging technique to address such an issue with limited and less accurate network information. In this paper, we utilize DRL to design an optimal computation offloading and resource allocation strategy for minimizing system energy consumption. We first present a multi-user end-edge-cloud orchestrated network where all devices and base stations have computation capabilities. Then, we formulate the joint computation offloading and resource allocation problem as a Markov Decision Process (MDP) and propose a new DRL algorithm to minimize system energy consumption. Numerical results based on a real-world dataset demonstrate that the proposed DRL-based algorithm significantly outperforms the benchmark policies in terms of system energy consumption. Extensive simulations show that learning rate, discount factor, and number of devices have considerable influence on the performance of the proposed algorithm

    Enhancing the performance of energy harvesting wireless communications using optimization and machine learning

    Get PDF
    The motivation behind this thesis is to provide efficient solutions for energy harvesting communications. Firstly, an energy harvesting underlay cognitive radio relaying network is investigated. In this context, the secondary network is an energy harvesting network. Closed-form expressions are derived for transmission power of secondary source and relay that maximizes the secondary network throughput. Secondly, a practical scenario in terms of information availability about the environment is investigated. We consider a communications system with a source capable of harvesting solar energy. Two cases are considered based on the knowledge availability about the underlying processes. When this knowledge is available, an algorithm using this knowledge is designed to maximize the expected throughput, while reducing the complexity of traditional methods. For the second case, when the knowledge about the underlying processes is unavailable, reinforcement learning is used. Thirdly, a number of learning architectures for reinforcement learning are introduced. They are called selector-actor-critic, tuner-actor-critic, and estimator-selector-actor-critic. The goal of the selector-actor-critic architecture is to increase the speed and the efficiency of learning an optimal policy by approximating the most promising action at the current state. The tuner-actor-critic aims at improving the learning process by providing the actor with a more accurate estimation about the value function. Estimator-selector-actor-critic is introduced to support intelligent agents. This architecture mimics rational humans in the way of analyzing available information, and making decisions. Then, a harvesting communications system working in an unknown environment is evaluated when it is supported by the proposed architectures. Fourthly, a realistic energy harvesting communications system is investigated. The state and action spaces of the underlying Markov decision process are continuous. Actor-critic is used to optimize the system performance. The critic uses a neural network to approximate the action-value function. The actor uses policy gradient to optimize the policy\u27s parameters to maximize the throughput

    Deep Reinforcement Learning for Stochastic Computation Offloading in Digital Twin Networks

    Full text link
    The rapid development of Industrial Internet of Things (IIoT) requires industrial production towards digitalization to improve network efficiency. Digital Twin is a promising technology to empower the digital transformation of IIoT by creating virtual models of physical objects. However, the provision of network efficiency in IIoT is very challenging due to resource-constrained devices, stochastic tasks, and resources heterogeneity. Distributed resources in IIoT networks can be efficiently exploited through computation offloading to reduce energy consumption while enhancing data processing efficiency. In this paper, we first propose a new paradigm Digital Twin Networks (DTN) to build network topology and the stochastic task arrival model in IIoT systems. Then, we formulate the stochastic computation offloading and resource allocation problem to minimize the long-term energy efficiency. As the formulated problem is a stochastic programming problem, we leverage Lyapunov optimization technique to transform the original problem into a deterministic per-time slot problem. Finally, we present Asynchronous Actor-Critic (AAC) algorithm to find the optimal stochastic computation offloading policy. Illustrative results demonstrate that our proposed scheme is able to significantly outperforms the benchmarks.Comment: 10 page

    Com-DDPG: A Multiagent Reinforcement Learning-based Offloading Strategy for Mobile Edge Computing

    Full text link
    The development of mobile services has impacted a variety of computation-intensive and time-sensitive applications, such as recommendation systems and daily payment methods. However, computing task competition involving limited resources increases the task processing latency and energy consumption of mobile devices, as well as time constraints. Mobile edge computing (MEC) has been widely used to address these problems. However, there are limitations to existing methods used during computation offloading. On the one hand, they focus on independent tasks rather than dependent tasks. The challenges of task dependency in the real world, especially task segmentation and integration, remain to be addressed. On the other hand, the multiuser scenarios related to resource allocation and the mutex access problem must be considered. In this paper, we propose a novel offloading approach, Com-DDPG, for MEC using multiagent reinforcement learning to enhance the offloading performance. First, we discuss the task dependency model, task priority model, energy consumption model, and average latency from the perspective of server clusters and multidependence on mobile tasks. Our method based on these models is introduced to formalize communication behavior among multiple agents; then, reinforcement learning is executed as an offloading strategy to obtain the results. Because of the incomplete state information, long short-term memory (LSTM) is employed as a decision-making tool to assess the internal state. Moreover, to optimize and support effective action, we consider using a bidirectional recurrent neural network (BRNN) to learn and enhance features obtained from agents' communication. Finally, we simulate experiments on the Alibaba cluster dataset. The results show that our method is better than other baselines in terms of energy consumption, load status and latency
    corecore