252 research outputs found

    Effect of oil palm empty fruit bunches (OPEFB) fibers to the compressive strength and water absorption of concrete

    Get PDF
    Growing popularity based on environmentally-friendly, low cost and lightweight building materials in the construction industry has led to a need to examine how these characteristics can be achieved and at the same time giving the benefit to the environment and maintain the material requirements based on the standards required. Recycling of waste generated from industrial and agricultural activities as measures of building materials is not only a viable solution to the problem of pollution but also to produce an economic design of building

    Quality-Based Backlight Optimization for Video Playback on Handheld Devices

    Get PDF
    For a typical handheld device, the backlight accounts for a significant percentage of the total energy consumption (e.g., around 30% for a Compaq iPAQ 3650). Substantial energy savings can be achieved by dynamically adapting backlight intensity levels on such low-power portable devices. In this paper, we analyze the characteristics of video streaming services and propose a cross-layer optimization scheme called quality adapted backlight scaling (QABS) to achieve backlight energy savings for video playback applications on handheld devices. Specifically, we present a fast algorithm to optimize backlight dimming while keeping the degradation in image quality to a minimum so that the overall service quality is close to a specified threshold. Additionally, we propose two effective techniques to prevent frequent backlight switching, which negatively affects user perception of video. Our initial experimental results indicate that the energy used for backlight is significantly reduced, while the desired quality is satisfied. The proposed algorithms can be realized in real time

    Review of Display Technologies Focusing on Power Consumption

    Get PDF
    Producción CientíficaThis paper provides an overview of the main manufacturing technologies of displays, focusing on those with low and ultra-low levels of power consumption, which make them suitable for current societal needs. Considering the typified value obtained from the manufacturer’s specifications, four technologies—Liquid Crystal Displays, electronic paper, Organic Light-Emitting Display and Electroluminescent Displays—were selected in a first iteration. For each of them, several features, including size and brightness, were assessed in order to ascertain possible proportional relationships with the rate of consumption. To normalize the comparison between different display types, relative units such as the surface power density and the display frontal intensity efficiency were proposed. Organic light-emitting display had the best results in terms of power density for small display sizes. For larger sizes, it performs less satisfactorily than Liquid Crystal Displays in terms of energy efficiency.Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R

    A Camera-Based Energy Management of Computer Displays and TV Sets

    Get PDF

    Adaptive buffer power save mechanism for mobile multimedia streaming

    Get PDF
    With the proliferation of wireless networks, the use of mobile devices to stream multimedia is growing in popularity. Although the devices are improving in that they are becoming smaller, more complex and capable of running more applications than ever before, there is one aspect of them that is lagging behind. Batteries have seen little development, even though they are one of the most important parts of the devices. Multimedia streaming puts extra pressure on batteries, causing them to discharge faster. This often means that streaming tasks can not be completed, resulting in significant user dissatisfaction. Consequently, effort is required to devise mechanisms to enable and increase in battery life while streaming multimedia. In this context, this thesis presents a novel algorithm to save power in mobile devices during the streaming of multimedia content. The proposed Adaptive-Buffer Power Save Mechanism (AB-PSM) controls how the data is sent over wireless networks, achieving significant power savings. There is little or no effect on the user and the algorithm is very simple to implement. The thesis describes tests which show the effectiveness of AB-PSM in comparison with the legacy power save mechanism present in IEEE 802.11. The thesis also presents a detailed overview of the IEEE 802.11 protocols and an in-depth literature review in the area of power saving during multimedia streaming. A novel analysis of how the battery of a mobile device is affected by multimedia streaming in its different stages is given. A total-power-save algorithm is then described as a possible extension to the Adaptive-Buffer Power Save Mechanism

    Adaptive display power management for mobile games

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Energy-Aware Mobile Learning:Opportunities and Challenges

    Full text link

    Dynamic power management: from portable devices to high performance computing

    Get PDF
    Electronic applications are nowadays converging under the umbrella of the cloud computing vision. The future ecosystem of information and communication technology is going to integrate clouds of portable clients and embedded devices exchanging information, through the internet layer, with processing clusters of servers, data-centers and high performance computing systems. Even thus the whole society is waiting to embrace this revolution, there is a backside of the story. Portable devices require battery to work far from the power plugs and their storage capacity does not scale as the increasing power requirement does. At the other end processing clusters, such as data-centers and server farms, are build upon the integration of thousands multiprocessors. For each of them during the last decade the technology scaling has produced a dramatic increase in power density with significant spatial and temporal variability. This leads to power and temperature hot-spots, which may cause non-uniform ageing and accelerated chip failure. Nonetheless all the heat removed from the silicon translates in high cooling costs. Moreover trend in ICT carbon footprint shows that run-time power consumption of the all spectrum of devices accounts for a significant slice of entire world carbon emissions. This thesis work embrace the full ICT ecosystem and dynamic power consumption concerns by describing a set of new and promising system levels resource management techniques to reduce the power consumption and related issues for two corner cases: Mobile Devices and High Performance Computing
    corecore