26 research outputs found

    Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies

    Get PDF
    Recently, the marine habitat has been under pollution threat, which impacts many human activities as well as human life. Increasing concerns about pollution levels in the oceans and coastal regions have led to multiple approaches for measuring and mitigating marine pollution, in order to achieve sustainable marine water quality. Satellite remote sensing, covering large and remote areas, is considered useful for detecting and monitoring marine pollution. Recent developments in sensor technologies have transformed remote sensing into an effective means of monitoring marine areas. Different remote sensing platforms and sensors have their own capabilities for mapping and monitoring water pollution of different types, characteristics, and concentrations. This chapter will discuss and elaborate the merits and limitations of these remote sensing techniques for mapping oil pollutants, suspended solid concentrations, algal blooms, and floating plastic waste in marine waters

    Human and environmental exposure to hydrocarbon pollution in the Niger Delta:A geospatial approach

    Get PDF
    This study undertook an integrated geospatial assessment of human and environmental exposure to oil pollution in the Niger Delta using primary and secondary spatial data. This thesis begins by presenting a clear rationale for the study of extensive oil pollution in the Niger Delta, followed by a critical literature review of the potential application of geospatial techniques for monitoring and managing the problem. Three analytical chapters report on the methodological developments and applications of geospatial techniques that contribute to achieving the aim of the study. Firstly, a quantitative assessment of human and environmental exposure to oil pollution in the Niger Delta was performed using a government spill database. This was carried out using Spatial Analysis along Networks (SANET), a geostatistical tool, since oil spills in the region tend to follow the linear patterns of the pipelines. Spatial data on pipelines, oil spills, population and land cover data were analysed in order to quantify the extent of human and environmental exposure to oil pollution. The major causes of spills and spatial factors potentially reinforcing reported causes were analysed. Results show extensive general exposure and sabotage as the leading cause of oil pollution in the Niger Delta. Secondly, a method of delineating the river network in the Niger Delta using Sentinel-1 SAR data was developed, as a basis for modelling potential flow of pollutants in the distributary pathways of the network. The cloud penetration capabilities of SAR sensing are particularly valuable for this application since the Niger Delta is notorious for cloud cover. Vector and raster-based river networks derived from Sentinel-1 were compared to alternative river map products including those from the USGS and ESA. This demonstrated the superiority of the Sentinel-1 derived river network, which was subsequently used in a flow routing analysis to demonstrate the potential for understanding oil spill dispersion. Thirdly, the study applied optical remote sensing for indirect detection and mapping of oil spill impacts on vegetation. Multi-temporal Landsat data was used to delineate the spill impact footprint of a notable 2008 oil spill incident in Ogoniland and population exposure was evaluated. The optical data was effective in impact area delineation, demonstrating extensive and long-lasting population exposure to oil pollution. Overall, this study has successfully assembled and produced relevant spatial and attribute data sets and applied integrated geostatistical analytical techniques to understand the distribution and impacts of oil spills in the Niger Delta. The study has revealed the extensive level of human and environmental exposure to hydrocarbon pollution in the Niger Delta and introduced new methods that will be valuable fo

    Investigation of Coastal Vegetation Dynamics and Persistence in Response to Hydrologic and Climatic Events Using Remote Sensing

    Get PDF
    Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for human societies. Therefore, it is imperative to track and quantify both short and long-term changes in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and water level by approximately two months. This analysis provided insight into long-term CW dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical remote sensing data such as Landsat which is frequently partially obscured due to clouds and this can that makes the time-series sparse and unusable during meteorologically active seasons. Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a simulated constellation for NDVI by integrating data from three compatible satellite sensors. The visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI and to compensate each satellite sensor\u27s shortcomings in visible coverage area. The quantitative comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical test results and qualitative performance evaluation suggest that TSF was able to synthesize the missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for long term studies

    THE USE OF MARINE RADAR FOR INTERTIDAL AREA SURVEY AND MONITORING COASTAL MORPHOLOGICAL CHANGE

    Get PDF
    Surveying and monitoring the dynamic morphology of intertidal areas is a logistically challenging and expensive task, due to their large area and complications associated with access. This thesis describes a contribution to the nearshore survey industry; an innovative methodology is developed and subsequently applied to marine radar image data in order to map topography within the intertidal area. This new method of intertidal topographical mapping has a reasonable spatial resolution (5 m) and operates over a large radial range (~4 km) with the required temporal resolution to observe both event-based and long-term morphological change (currently bi-weekly surveys). This study uses nearly three years of radar image data collected during 2006-2009 from an installation on Hilbre Island at the mouth of the Dee estuary, northwest UK. The development of the novel 'radar waterline method' builds on previous waterline techniques and improves upon them by moving the analysis from the spatial to the temporal domain, making the analysis extremely robust and more resilient to poor quality image data. Results from radar topographical surveys are compared to those of a LiDAR survey during October 2006. The differences compare favourably across large areas of the intertidal zone, within the first kilometre 97% of radar-derived elevations lie within 1 m of LiDAR estimations. Concentrations of poor estimations are seen in areas that are shown to be shadowed from the radar antenna or suffering from pooling water during the ebb tide. The full three-year dataset is used to analyse changing intertidal morphology over that time period using radar-derived surveys generated every two weeks. These surveys are used to perform an analysis of changing sediment volume and mean elevation, giving an indication of beach 'health' and revealing a seasonal trend of erosion and accretion at several sites across the Dee estuary. The ability of the developed technique to resolve morphological changes resulting from storm events is demonstrated and a quantification of that impact is provided. The application of the technique to long-range (7.5 km) marine radar data is demonstrated in an attempt to test the spatial and operational limitations of this new method. The development of a mobile radar survey platform, the Rapidar allows remote areas to be surveyed and provides a platform for potential integration with other survey instruments. A description of the potential application to coastal management and monitoring is presented. Areas of further work intended to improve vertical elevation accuracy and robustness are proposed. This contribution provides a useful tool for coastal scientists, engineers and decision-makers interested in the management of coastal areas that will form part of integrated coastal management and monitoring operations. This method presents several key advantages over traditional survey techniques including; the large area of operation and temporal resolution of repeat surveys, it is limited primarily by topographical shadowing and low wind conditions limiting data collection

    Flow-3D CFD model of bifurcated open channel flow: setup and validation

    Get PDF
    Bifurcation is a morphological feature present in most of fluvial systems; where a river splits into two channels, each bearing a portion of the flow and sediments. Extensive theoretical studies of river bifurcations were performed to understand the nature of flow patterns at such diversions. Nevertheless, the complexity of the flow structure in the bifurcated channel has resulted in various constraints on physical experimentation, so computational modelling is required to investigate the phenomenon. The advantages of computational modelling compared with experimental research (e.g. simple variable control, reduced cost, optimize design condition etc.) are widely known. The great advancement of computer technologies and the exponential increase in power, memory storage and affordability of high-speed machines in the early 20th century led to evolution and wide application of numerical fluid flow simulations, generally referred to as Computational Fluid Dynamics {CFD). In this study, the open-channel flume with a lateral channel established by Momplot et al (2017) is modelled in Flow-3D. The original investigation on divided flow of equal widths as simulated in ANSYS Fluent and validated with velocity measurements

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

    Geomorphology from space: A global overview of regional landforms

    Get PDF
    This book, Geomorphology from Space: A Global Overview of Regional Landforms, was published by NASA STIF as a successor to the two earlier works on the same subject: Mission to Earth: LANDSAT views the Earth, and ERTS-1: A New Window on Our Planet. The purpose of the book is threefold: first, to serve as a stimulant in rekindling interest in descriptive geomorphology and landforms analysis at the regional scale; second, to introduce the community of geologists, geographers, and others who analyze the Earth's surficial forms to the practical value of space-acquired remotely sensed data in carrying out their research and applications; and third, to foster more scientific collaboration between geomorphologists who are studying the Earth's landforms and astrogeologists who analyze landforms on other planets and moons in the solar system, thereby strengthening the growing field of comparative planetology

    Book of short Abstracts of the 11th International Symposium on Digital Earth

    Get PDF
    The Booklet is a collection of accepted short abstracts of the ISDE11 Symposium
    corecore