2,637 research outputs found

    Dynamic agent prioritisation with penalties in distributed local search.

    Get PDF
    Distributed Constraint Satisfaction Problems (DisCSPs) solving techniques solve problems which are distributed over a number of agents.The distribution of the problem is required due to privacy, security or cost issues and, therefore centralised problem solving is inappropriate. Distributed local search is a framework that solves large combinatorial and optimization problems. For large problems it is often faster than distributed systematic search methods. However, local search techniques are unable to detect unsolvability and have the propensity of getting stuck at local optima. Several strategies such as weights on constraints, penalties on values and probability have been used to escape local optima. In this paper, we present an approach for escaping local optima called Dynamic Agent Prioritisation and Penalties (DynAPP) which combines penalties on variable values and dynamic variable prioritisation for the resolution of distributed constraint satisfaction problems. Empirical evaluation with instances of random, meeting scheduling and graph colouring problems have shown that this approach solved more problems in less time at the phase transition when compared with some state of the art algorithms. Further evaluation of the DynAPP approach on iteration-bounded optimisation problems showed that DynAPP is competitive

    Combining search strategies for distributed constraint satisfaction.

    Get PDF
    Many real-life problems such as distributed meeting scheduling, mobile frequency allocation and resource allocation can be solved using multi-agent paradigms. Distributed constraint satisfaction problems (DisCSPs) is a framework for describing such problems in terms of related subproblems, called a complex local problem (CLP), which are dispersed over a number of locations, each with its own constraints on the values their variables can take. An agent knows the variables in its CLP plus the variables (and their current value) which are directly related to one of its own variables and the constraints relating them. It knows little about the rest of the problem. Thus, each CLP is solved by an agent which cooperates with other agents to solve the overall problem. Algorithms for solving DisCSPs can be classified as either systematic or local search with the former being complete and the latter incomplete. The algorithms generally assume that each agent has only one variable as they can solve DisCSP with CLPs using virtual agents. However, in large DisCSPs where it is appropriate to trade completeness off against timeliness, systematic search algorithms can be expensive when compared to local search algorithms which generally converge quicker to a solution (if a solution is found) when compared to systematic algorithms. A major drawback of local search algorithms is getting stuck at local optima. Significant researches have focused on heuristics which can be used in an attempt to either escape or avoid local optima. This thesis makes significant contributions to local search algorithms for DisCSPs. Firstly, we present a novel combination of heuristics in DynAPP (Dynamic Agent Prioritisation with Penalties), which is a distributed synchronous local search algorithm for solving DisCSPs having one variable per agent. DynAPP combines penalties on values and dynamic agent prioritisation heuristics to escape local optima. Secondly, we develop a divide and conquer approach that handles DisCSP with CLPs by exploiting the structure of the problem. The divide and conquer approach prioritises the finding of variable instantiations which satisfy the constraints between agents which are often more expensive to satisfy when compared to constraints within an agent. The approach also exploits concurrency and combines the following search strategies: (i) both systematic and local searches; (ii) both centralised and distributed searches; and (iii) a modified compilation strategy. We also present an algorithm that implements the divide and conquer approach in Multi-DCA (Divide and Conquer Algorithm for Agents with CLPs). DynAPP and Multi-DCA were evaluated on several benchmark problems and compared to the leading algorithms for DisCSPs and DisCSPs with CLPs respectively. The results show that at the region of difficult problems, combining search heuristics and exploiting problem structure in distributed constraint satisfaction achieve significant benefits (i.e. generally used less computational time and communication costs) over existing competing methods

    Engage D5.6 Thematic challenge briefing notes (1st and 2nd releases)

    Get PDF
    Engage identified four thematic challenges to address research topics not contemporaneously (sufficiently) addressed by SESAR. This deliverable serves primarily as a record of the two sets of released thematic challenge briefing notes

    Proactive, dynamic and multi-criteria scheduling of maintenance activities.

    No full text
    International audienceIn maintenance services skills management is directly linked to the performance of the service. A good human resource management will have an effect on the performance of the plant. Each task which has to be performed is characterised by the level of competence required. For each skill, human resources have different levels. The issue of making a decision about assignment and scheduling leads to finding the best resource and the correct time to perform the task. The solve this problem, managers have to take into account the different criteria such as the number of late tasks, the workload or the disturbance when inserting a new task into an existing planning. As there is a lot of estimated data, the managers also have to anticipate these uncertainties. To solve this multi-criteria problem, we propose a dynamic approach based on the kangaroo methodology. To deal with uncertainties, estimated data is modelled with fuzzy logic. This approach then offers the maintenance expert a choice between a set of the most robust possibilities

    Engage D2.6 Annual combined thematic workshops progress report (series 2)

    Get PDF
    The preparation, organisation and conclusions from the thematic challenge workshops, two ad hoc technical workshops, a technical session on data and a MET/ENV workshop held in 2019 and 2020 are described. Partly due to Covid-19, two of the 2020 thematic challenge workshops scheduled to take place at the end of 2020 were re-scheduled to January 2021. We also report on the preparation for these two workshops, while the conclusions will be included in the next corresponding deliverable

    An Empirical Investigation into Wicked Operational Problems

    Get PDF
    This thesis begins by considering the nature of research in Operations Management, the methods that are employed and the types of problems it addresses. We contend that as the discipline matures and it extends its boundaries the research challenges become more complex and the reductionist techniques of Operations Research become less appropriate. To explore this issue we use the concept of wicked problems. Wicked problems were developed by Rittel and Webber during the 1970’s. They suggest the existence of a class of problems which could not be solved using the techniques of Operations Research. They describe Wicked Problems using ten properties or characteristics, which, after a thorough review of their descriptions, we have condensed to six themes. We consider the current state of the “Wicked Problem” literature and have identified the paucity relating to Operations Management. Thus we develop our research question: “what are the characteristics of wicked operational problems?” We investigate this question using a single extended case study of an operation experiencing significant unresolved performance issues. We analyse the case using the tenets of systems thinking, structure and behaviour, and extend the empirical literature on wicked problems to identify the characteristics of wicked operational problems. The research indicates that elements of wicked problems exist at an operational level. The significance of this finding is that reductionist techniques to problem solving e.g. lean and six sigma may not be applicable to the challenges facing operational managers when confronted with the characteristics of a wicked operational problem

    A quality of service based framework for dynamic, dependable systems

    Get PDF
    There is currently much UK government and industry interest towards the integration of complex computer-based systems, including those in the military domain. These systems can include both mission critical and safety critical applications, and therefore require the dependable communication of data. Current modular military systems requiring such performance guarantees are mostly based on parameters and system states fixed during design time, thus allowing a predictable estimate of performance. These systems can exhibit a limited degree of reconfiguration, but this is typically within the constraints of a predefined set of configurations. The ability to reconfigure systems more dynamically, could lead to further increased flexibility and adaptability, resulting in the better use of existing assets. Current software architecture models that are capable of providing this flexibility, however, tend to lack support for dependable performance. This thesis explores the benefits for the dependability of future dynamic systems, built on a publish/subscribe model, from using Quality of Service (QoS) methods to map application level data communication requirements to available network resources. Through this, original contributions to knowledge are created, including; the proposal of a QoS framework that specifies a way of defining flexible levels of QoS characteristics and their use in the negotiation of network resources, a simulation based evaluation of the QoS framework and specifically the choice of negotiation algorithm used, and a test-bed based feasibility study. Simulation experimentation conducted comparing different methods of QoS negotiation gives a clear indication that the use of the proposed QoS framework and flexible negotiation algorithm can provide a benefit in terms of system utility, resource utilisation, and system stability. The choice of negotiation algorithm has a particularly strong impact on these system properties. The cost of these benefits comes in terms of the processing power and execution time required to reach a decision on the acceptance of a subscriber. It is suggested, given this cost, that when computational resources are limited, a simpler priority based negotiation algorithm should be used. Where system resources are more abundant, however, the flexible negotiation algorithm proposed within the QoS framework can offer further benefits. Through the implementation of the QoS framework within an existing military avionics software architecture based emulator on a test-bed, both the technical challenges that will need to be overcome and, more importantly, the potential viability for the inclusion of the QoS framework have been demonstrated

    Cognitive networking for next generation of cellular communication systems

    Get PDF
    This thesis presents a comprehensive study of cognitive networking for cellular networks with contributions that enable them to be more dynamic, agile, and efficient. To achieve this, machine learning (ML) algorithms, a subset of artificial intelligence, are employed to bring such cognition to cellular networks. More specifically, three major branches of ML, namely supervised, unsupervised, and reinforcement learning (RL), are utilised for various purposes: unsupervised learning is used for data clustering, while supervised learning is employed for predictions on future behaviours of networks/users. RL, on the other hand, is utilised for optimisation purposes due to its inherent characteristics of adaptability and requiring minimal knowledge of the environment. Energy optimisation, capacity enhancement, and spectrum access are identified as primary design challenges for cellular networks given that they are envisioned to play crucial roles for 5G and beyond due to the increased demand in the number of connected devices as well as data rates. Each design challenge and its corresponding proposed solution are discussed thoroughly in separate chapters. Regarding energy optimisation, a user-side energy consumption is investigated by considering Internet of things (IoT) networks. An RL based intelligent model, which jointly optimises the wireless connection type and data processing entity, is proposed. In particular, a Q-learning algorithm is developed, through which the energy consumption of an IoT device is minimised while keeping the requirement of the applications--in terms of response time and security--satisfied. The proposed methodology manages to result in 0% normalised joint cost--where all the considered metrics are combined--while the benchmarks performed 54.84% on average. Next, the energy consumption of radio access networks (RANs) is targeted, and a traffic-aware cell switching algorithm is designed to reduce the energy consumption of a RAN without compromising on the user quality-of-service (QoS). The proposed technique employs a SARSA algorithm with value function approximation, since the conventional RL methods struggle with solving problems with huge state spaces. The results reveal that up to 52% gain on the total energy consumption is achieved with the proposed technique, and the gain is observed to reduce when the scenario becomes more realistic. On the other hand, capacity enhancement is studied from two different perspectives, namely mobility management and unmanned aerial vehicle (UAV) assistance. Towards that end, a predictive handover (HO) mechanism is designed for mobility management in cellular networks by identifying two major issues of Markov chains based HO predictions. First, revisits--which are defined as a situation whereby a user visits the same cell more than once within the same day--are diagnosed as causing similar transition probabilities, which in turn increases the likelihood of making incorrect predictions. This problem is addressed with a structural change; i.e., rather than storing 2-D transition matrix, it is proposed to store 3-D one that also includes HO orders. The obtained results show that 3-D transition matrix is capable of reducing the HO signalling cost by up to 25.37%, which is observed to drop with increasing randomness level in the data set. Second, making a HO prediction with insufficient criteria is identified as another issue with the conventional Markov chains based predictors. Thus, a prediction confidence level is derived, such that there should be a lower bound to perform HO predictions, which are not always advantageous owing to the HO signalling cost incurred from incorrect predictions. The outcomes of the simulations confirm that the derived confidence level mechanism helps in improving the prediction accuracy by up to 8.23%. Furthermore, still considering capacity enhancement, a UAV assisted cellular networking is considered, and an unsupervised learning-based UAV positioning algorithm is presented. A comprehensive analysis is conducted on the impacts of the overlapping footprints of multiple UAVs, which are controlled by their altitudes. The developed k-means clustering based UAV positioning approach is shown to reduce the number of users in outage by up to 80.47% when compared to the benchmark symmetric deployment. Lastly, a QoS-aware dynamic spectrum access approach is developed in order to tackle challenges related to spectrum access, wherein all the aforementioned types of ML methods are employed. More specifically, by leveraging future traffic load predictions of radio access technologies (RATs) and Q-learning algorithm, a novel proactive spectrum sensing technique is introduced. As such, two different sensing strategies are developed; the first one focuses solely on sensing latency reduction, while the second one jointly optimises sensing latency and user requirements. In particular, the proposed Q-learning algorithm takes the future load predictions of the RATs and the requirements of secondary users--in terms of mobility and bandwidth--as inputs and directs the users to the spectrum of the optimum RAT to perform sensing. The strategy to be employed can be selected based on the needs of the applications, such that if the latency is the only concern, the first strategy should be selected due to the fact that the second strategy is computationally more demanding. However, by employing the second strategy, sensing latency is reduced while satisfying other user requirements. The simulation results demonstrate that, compared to random sensing, the first strategy decays the sensing latency by 85.25%, while the second strategy enhances the full-satisfaction rate, where both mobility and bandwidth requirements of the user are simultaneously satisfied, by 95.7%. Therefore, as it can be observed, three key design challenges of the next generation of cellular networks are identified and addressed via the concept of cognitive networking, providing a utilitarian tool for mobile network operators to plug into their systems. The proposed solutions can be generalised to various network scenarios owing to the sophisticated ML implementations, which renders the solutions both practical and sustainable
    corecore