97,650 research outputs found

    REX:a development platform and online learning approach for Runtime emergent software systems

    Get PDF
    Conventional approaches to self-adaptive software architectures require human experts to specify models, policies and processes by which software can adapt to its environment. We present REX, a complete platform and online learning approach for runtime emergent software systems, in which all decisions about the assembly and adaptation of software are machine-derived. REX is built with three major, integrated layers: (i) a novel component-based programming language called Dana, enabling discovered assembly of systems and very low cost adaptation of those systems for dynamic re-assembly; (ii) a perception, assembly and learning framework (PAL) built on Dana, which abstracts emergent software into configurations and perception streams; and (iii) an online learning implementation based on a linear bandit model, which helps solve the search space explosion problem inherent in runtime emergent software. Using an emergent web server as a case study, we show how software can be autonomously self-assembled from discovered parts, and continually optimized over time (by using alternative parts) as it is subjected to different deployment conditions. Our system begins with no knowledge that it is specifically assembling a web server, nor with knowledge of the deployment conditions that may occur at runtime

    Using Monte Carlo Search With Data Aggregation to Improve Robot Soccer Policies

    Full text link
    RoboCup soccer competitions are considered among the most challenging multi-robot adversarial environments, due to their high dynamism and the partial observability of the environment. In this paper we introduce a method based on a combination of Monte Carlo search and data aggregation (MCSDA) to adapt discrete-action soccer policies for a defender robot to the strategy of the opponent team. By exploiting a simple representation of the domain, a supervised learning algorithm is trained over an initial collection of data consisting of several simulations of human expert policies. Monte Carlo policy rollouts are then generated and aggregated to previous data to improve the learned policy over multiple epochs and games. The proposed approach has been extensively tested both on a soccer-dedicated simulator and on real robots. Using this method, our learning robot soccer team achieves an improvement in ball interceptions, as well as a reduction in the number of opponents' goals. Together with a better performance, an overall more efficient positioning of the whole team within the field is achieved
    • …
    corecore