1,292 research outputs found

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    3D-TV Production from Conventional Cameras for Sports Broadcast

    Get PDF
    3DTV production of live sports events presents a challenging problem involving conflicting requirements of main- taining broadcast stereo picture quality with practical problems in developing robust systems for cost effective deployment. In this paper we propose an alternative approach to stereo production in sports events using the conventional monocular broadcast cameras for 3D reconstruction of the event and subsequent stereo rendering. This approach has the potential advantage over stereo camera rigs of recovering full scene depth, allowing inter-ocular distance and convergence to be adapted according to the requirements of the target display and enabling stereo coverage from both existing and ‘virtual’ camera positions without additional cameras. A prototype system is presented with results of sports TV production trials for rendering of stereo and free-viewpoint video sequences of soccer and rugby

    A Photogrammetry-Based Hybrid System for Dynamic Tracking and Measurement

    Get PDF
    Noncontact measurements of lightweight flexible aerospace structures present several challenges. Objects are usually mounted on a test stand because current noncontact measurement techniques require that the net motion of the object be zero. However, it is often desirable to take measurements of the object under operational conditions, and in the case of miniature aerial vehicles (MAVs) and deploying space structures, the test article will undergo significant translational motion. This thesis describes a hybrid noncontact measurement system which will enable measurement of structural kinematics of an object freely moving about a volume. By using a real-time videogrammetry system, a set of pan-tilt-zoom (PTZ) cameras is coordinated to track large-scale net motion and produce high-speed, high-quality images for photogrammetric surface reconstruction. The design of the system is presented in detail. A method of generating the calibration parameters for the PTZ cameras is presented and evaluated and is shown to produce good results. The results of camera synchronization tests and tracking accuracy evaluation are presented as well. Finally, a demonstration of the hybrid system is presented in which all four PTZ cameras track an MAV in flight

    WATCHING PEOPLE: ALGORITHMS TO STUDY HUMAN MOTION AND ACTIVITIES

    Get PDF
    Nowadays human motion analysis is one of the most active research topics in Computer Vision and it is receiving an increasing attention from both the industrial and scientific communities. The growing interest in human motion analysis is motivated by the increasing number of promising applications, ranging from surveillance, human–computer interaction, virtual reality to healthcare, sports, computer games and video conferencing, just to name a few. The aim of this thesis is to give an overview of the various tasks involved in visual motion analysis of the human body and to present the issues and possible solutions related to it. In this thesis, visual motion analysis is categorized into three major areas related to the interpretation of human motion: tracking of human motion using virtual pan-tilt-zoom (vPTZ) camera, recognition of human motions and human behaviors segmentation. In the field of human motion tracking, a virtual environment for PTZ cameras (vPTZ) is presented to overcame the mechanical limitations of PTZ cameras. The vPTZ is built on equirectangular images acquired by 360° cameras and it allows not only the development of pedestrian tracking algorithms but also the comparison of their performances. On the basis of this virtual environment, three novel pedestrian tracking algorithms for 360° cameras were developed, two of which adopt a tracking-by-detection approach while the last adopts a Bayesian approach. The action recognition problem is addressed by an algorithm that represents actions in terms of multinomial distributions of frequent sequential patterns of different length. Frequent sequential patterns are series of data descriptors that occur many times in the data. The proposed method learns a codebook of frequent sequential patterns by means of an apriori-like algorithm. An action is then represented with a Bag-of-Frequent-Sequential-Patterns approach. In the last part of this thesis a methodology to semi-automatically annotate behavioral data given a small set of manually annotated data is presented. The resulting methodology is not only effective in the semi-automated annotation task but can also be used in presence of abnormal behaviors, as demonstrated empirically by testing the system on data collected from children affected by neuro-developmental disorders

    On-line control of active camera networks

    Get PDF
    Large networks of cameras have been increasingly employed to capture dynamic events for tasks such as surveillance and training. When using active (pan-tilt-zoom) cameras to capture events distributed throughout a large area, human control becomes impractical and unreliable. This has led to the development of automated approaches for on-line camera control. I introduce a new approach that consists of a stochastic performance metric and a constrained optimization method. The metric quantifies the uncertainty in the state of multiple points on each target. It uses state-space methods with stochastic models of the target dynamics and camera measurements. It can account for static and dynamic occlusions, accommodate requirements specific to the algorithm used to process the images, and incorporate other factors that can affect its results. The optimization explores the space of camera configurations over time under constraints associated with the cameras, the predicted target trajectories, and the image processing algorithm. While an exhaustive exploration of this parameter space is intractable, through careful complexity analysis and application domain observations I have identified appropriate alternatives for reducing the space. Specifically, I reduce the spatial dimension of the search by dividing the optimization problem into subproblems, and then optimizing each subproblem independently. I reduce the temporal dimension of the search by using empirically-based heuristics inside each subproblem. The result is a tractable optimization that explores an appropriate subspace of the parameters, while attempting to minimize the risk of excluding the global optimum. The approach can be applied to conventional surveillance tasks (e.g., tracking or face recognition), as well as tasks employing more complex computer vision methods (e.g., markerless motion capture or 3D reconstruction). I present the results of experimental simulations of two such scenarios, using controlled and natural (unconstrained) target motions, employing simulated and real target tracks, in realistic scenes, and with realistic camera networks

    Lightfield Analysis and Its Applications in Adaptive Optics and Surveillance Systems

    Get PDF
    An image can only be as good as the optics of a camera or any other imaging system allows it to be. An imaging system is merely a transformation that takes a 3D world coordinate to a 2D image plane. This can be done through both linear/non-linear transfer functions. Depending on the application at hand it is easier to use some models of imaging systems over the others in certain situations. The most well-known models are the 1) Pinhole model, 2) Thin Lens Model and 3) Thick lens model for optical systems. Using light-field analysis the connection through these different models is described. A novel figure of merit is presented on using one optical model over the other for certain applications. After analyzing these optical systems, their applications in plenoptic cameras for adaptive optics applications are introduced. A new technique to use a plenoptic camera to extract information about a localized distorted planar wave front is described. CODEV simulations conducted in this thesis show that its performance is comparable to those of a Shack-Hartmann sensor and that they can potentially increase the dynamic range of angles that can be extracted assuming a paraxial imaging system. As a final application, a novel dual PTZ-surveillance system to track a target through space is presented. 22X optic zoom lenses on high resolution pan/tilt platforms recalibrate a master-slave relationship based on encoder readouts rather than complicated image processing algorithms for real-time target tracking. As the target moves out of a region of interest in the master camera, it is moved to force the target back into the region of interest. Once the master camera is moved, a precalibrated lookup table is interpolated to compute the relationship between the master/slave cameras. The homography that relates the pixels of the master camera to the pan/tilt settings of the slave camera then continue to follow the planar trajectories of targets as they move through space at high accuracies

    10411 Abstracts Collection -- Computational Video

    Get PDF
    From 10.10.2010 to 15.10.2010, the Dagstuhl Seminar 10411 ``Computational Video \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore