3,322 research outputs found

    Duration modeling with expanded HMM applied to speech recognition

    Get PDF
    The occupancy of the HMM states is modeled by means of a Markov chain. A linear estimator is introduced to compute the probabilities of the Markov chain. The distribution function (DF) represents accurately the observed data. Representing the DF as a Markov chain allows the use of standard HMM recognizers. The increase of complexity is negligible in training and strongly limited during recognition. Experiments performed on acoustic-phonetic decoding shows how the phone recognition rate increases from 60.6 to 61.1. Furthermore, on a task of database inquires, where phones are used as subword units, the correct word rate increases from 88.2 to 88.4.Peer ReviewedPostprint (published version

    Capacity and Complexity of HMM Duration Modeling Techniques

    Get PDF
    The ability of a standard hidden Markov model (HMM) or expanded state HMM (ESHMM) to accurately model duration distributions of phonemes is compared with specific duration-focused approaches such as semi-Markov models or variable transition probabilities. It is demonstrated that either a three-state ESHMM or a standard HMM with an increased number of states is capable of closely matching both Gamma distributions and duration distributions of phonemes from the TIMIT corpus, as measured by Bhattacharyya distance to the true distributions. Standard HMMs are easily implemented with off-the-shelf tools, whereas duration models require substantial algorithmic development and have higher computational costs when implemented, suggesting that a simple adjustment to HMM topologies is perhaps a more efficient solution to the problem of duration than more complex approaches

    LSTM Deep Neural Networks Postfiltering for Improving the Quality of Synthetic Voices

    Full text link
    Recent developments in speech synthesis have produced systems capable of outcome intelligible speech, but now researchers strive to create models that more accurately mimic human voices. One such development is the incorporation of multiple linguistic styles in various languages and accents. HMM-based Speech Synthesis is of great interest to many researchers, due to its ability to produce sophisticated features with small footprint. Despite such progress, its quality has not yet reached the level of the predominant unit-selection approaches that choose and concatenate recordings of real speech. Recent efforts have been made in the direction of improving these systems. In this paper we present the application of Long-Short Term Memory Deep Neural Networks as a Postfiltering step of HMM-based speech synthesis, in order to obtain closer spectral characteristics to those of natural speech. The results show how HMM-voices could be improved using this approach.Comment: 5 pages, 5 figure

    Integrating Prosodic and Lexical Cues for Automatic Topic Segmentation

    Get PDF
    We present a probabilistic model that uses both prosodic and lexical cues for the automatic segmentation of speech into topically coherent units. We propose two methods for combining lexical and prosodic information using hidden Markov models and decision trees. Lexical information is obtained from a speech recognizer, and prosodic features are extracted automatically from speech waveforms. We evaluate our approach on the Broadcast News corpus, using the DARPA-TDT evaluation metrics. Results show that the prosodic model alone is competitive with word-based segmentation methods. Furthermore, we achieve a significant reduction in error by combining the prosodic and word-based knowledge sources.Comment: 27 pages, 8 figure

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed
    • 

    corecore