459 research outputs found

    Optimal Pricing Effect on Equilibrium Behaviors of Delay-Sensitive Users in Cognitive Radio Networks

    Full text link
    This paper studies price-based spectrum access control in cognitive radio networks, which characterizes network operators' service provisions to delay-sensitive secondary users (SUs) via pricing strategies. Based on the two paradigms of shared-use and exclusive-use dynamic spectrum access (DSA), we examine three network scenarios corresponding to three types of secondary markets. In the first monopoly market with one operator using opportunistic shared-use DSA, we study the operator's pricing effect on the equilibrium behaviors of self-optimizing SUs in a queueing system. %This queue represents the congestion of the multiple SUs sharing the operator's single \ON-\OFF channel that models the primary users (PUs) traffic. We provide a queueing delay analysis with the general distributions of the SU service time and PU traffic using the renewal theory. In terms of SUs, we show that there exists a unique Nash equilibrium in a non-cooperative game where SUs are players employing individual optimal strategies. We also provide a sufficient condition and iterative algorithms for equilibrium convergence. In terms of operators, two pricing mechanisms are proposed with different goals: revenue maximization and social welfare maximization. In the second monopoly market, an operator exploiting exclusive-use DSA has many channels that will be allocated separately to each entering SU. We also analyze the pricing effect on the equilibrium behaviors of the SUs and the revenue-optimal and socially-optimal pricing strategies of the operator in this market. In the third duopoly market, we study a price competition between two operators employing shared-use and exclusive-use DSA, respectively, as a two-stage Stackelberg game. Using a backward induction method, we show that there exists a unique equilibrium for this game and investigate the equilibrium convergence.Comment: 30 pages, one column, double spac

    Asymmetric-valued Spectrum Auction and Competition in Wireless Broadband Services

    Full text link
    We study bidding and pricing competition between two spiteful mobile network operators (MNOs) with considering their existing spectrum holdings. Given asymmetric-valued spectrum blocks are auctioned off to them via a first-price sealed-bid auction, we investigate the interactions between two spiteful MNOs and users as a three-stage dynamic game and characterize the dynamic game's equilibria. We show an asymmetric pricing structure and different market share between two spiteful MNOs. Perhaps counter-intuitively, our results show that the MNO who acquires the less-valued spectrum block always lowers his service price despite providing double-speed LTE service to users. We also show that the MNO who acquires the high-valued spectrum block, despite charing a higher price, still achieves more market share than the other MNO. We further show that the competition between two MNOs leads to some loss of their revenues. By investigating a cross-over point at which the MNOs' profits are switched, it serves as the benchmark of practical auction designs

    Investment and Pricing with Spectrum Uncertainty: A Cognitive Operator's Perspective

    Full text link
    This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO can acquire spectrum dynamically in short-term by both sensing the empty "spectrum holes" of licensed bands and dynamically leasing from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match the current demands of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained useful spectrum amount is random due to primary licensed users' stochastic traffic. The C-MVNO needs to determine the optimal amounts of spectrum sensing and leasing by evaluating the trade off between cost and uncertainty. The C-MVNO also needs to determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium, including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users' wireless characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs.Comment: A shorter version appears in IEEE INFOCOM 2010. This version has been submitted to IEEE Transactions on Mobile Computin

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Entry game under opportunistic access in cognitive radio networks: a priority queue model

    Get PDF
    International audienceA cognitive radio network where an incumbent primary operator and an entrant secondary operator compete for users is modeled using queueing and game theory. The economic viability of supporting the secondary operator service using an opportunistic access to the spectrum owned by the primary operator is assessed. Against the benchmark of the primary operator operating as a monopolist, we show that the entry of the secondary operator is desirable from an efficiency perspective, since the carried traffic increases. Additionally, for a range of parameter values, a lump sum payment can be designed so that the incumbent operator has an incentive to let the secondary operator enter. Additionally, the opportunistic access setting has been compared against a leasing-based alternative, and we have concluded that the former outperforms the latter in terms of efficiency and incentive
    • …
    corecore