3,217 research outputs found

    Privacy preservation in mobile social networks

    Get PDF
    In this day and age with the prevalence of smartphones, networking has evolved in an intricate and complex way. With the help of a technology-driven society, the term "social networking" was created and came to mean using media platforms such as Myspace, Facebook, and Twitter to connect and interact with friends, family, or even complete strangers. Websites are created and put online each day, with many of them possessing hidden threats that the average person does not think about. A key feature that was created for vast amount of utility was the use of location-based services, where many websites inform their users that the website will be using the users' locations to enhance the functionality. However, still far too many websites do not inform their users that they may be tracked, or to what degree. In a similar juxtaposed scenario, the evolution of these social networks has allowed countless people to share photos with others online. While this seems harmless at face-value, there may be times in which people share photos of friends or other non-consenting individuals who do not want that picture viewable to anyone at the photo owner's control. There exists a lack of privacy controls for users to precisely de fine how they wish websites to use their location information, and for how others may share images of them online. This dissertation introduces two models that help mitigate these privacy concerns for social network users. MoveWithMe is an Android and iOS application which creates decoys that move locations along with the user in a consistent and semantically secure way. REMIND is the second model that performs rich probability calculations to determine which friends in a social network may pose a risk for privacy breaches when sharing images. Both models have undergone extensive testing to demonstrate their effectiveness and efficiency.Includes bibliographical reference

    Location Privacy in the Era of Big Data and Machine Learning

    Get PDF
    Location data of individuals is one of the most sensitive sources of information that once revealed to ill-intended individuals or service providers, can cause severe privacy concerns. In this thesis, we aim at preserving the privacy of users in telecommunication networks against untrusted service providers as well as improving their privacy in the publication of location datasets. For improving the location privacy of users in telecommunication networks, we consider the movement of users in trajectories and investigate the threats that the query history may pose on location privacy. We develop an attack model based on the Viterbi algorithm termed as Viterbi attack, which represents a realistic privacy threat in trajectories. Next, we propose a metric called transition entropy that helps to evaluate the performance of dummy generation algorithms, followed by developing a robust dummy generation algorithm that can defend users against the Viterbi attack. We compare and evaluate our proposed algorithm and metric on a publicly available dataset published by Microsoft, i.e., Geolife dataset. For privacy preserving data publishing, an enhanced framework for anonymization of spatio-temporal trajectory datasets termed the machine learning based anonymization (MLA) is proposed. The framework consists of a robust alignment technique and a machine learning approach for clustering datasets. The framework and all the proposed algorithms are applied to the Geolife dataset, which includes GPS logs of over 180 users in Beijing, China

    Security and Privacy in Mobile Computing: Challenges and Solutions

    Get PDF
    abstract: Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing. This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    On privacy in home automation systems

    Get PDF
    Home Automation Systems (HASs) are becoming increasingly popular in newly built as well as existing properties. While offering increased living comfort, resource saving features and other commodities, most current commercial systems do not protect sufficiently against passive attacks. In this thesis we investigate privacy aspects of Home Automation Systems. We analyse the threats of eavesdropping and traffic analysis attacks, demonstrating the risks of virtually undetectable privacy violations. By taking aspects of criminal and data protection law into account, we give an interdisciplinary overview of privacy risks and challenges in the context of HASs. We present the first framework to formally model privacy guarantees of Home Automation Systems and apply it to two different dummy traffic generation schemes. In a qualitative and quantitative study of these two algorithms, we show how provable privacy protection can be achieved and how privacy and energy efficiency are interdependent. This allows manufacturers to design and build secure Home Automation Systems which protect the users' privacy and which can be arbitrarily tuned to strike a compromise between privacy protection and energy efficiency.Hausautomationssysteme (HAS) gewinnen sowohl im Bereich der Neubauten als auch bei Bestandsimmobilien stetig an Beliebtheit. Während sie den Wohnkomfort erhöhen, Einsparpotential für Strom und Wasser sowie weitere Vorzüge bieten, schützen aktuelle Systeme nicht ausreichend vor passiven Angriffen. In dieser Arbeit untersuchen wir Aspekte des Datenschutzes von Hausautomationssystemen. Wir betrachten die Gefahr des Abfangens von Daten sowie der Verkehrsanalyse und zeigen die Risiken auf, welche sich durch praktisch unsichtbare Angriffe für Nutzende ergeben. Die Betrachtung straf- und datenschutzrechtlicher Aspekte ermöglicht einen interdisziplinären Überblick über Datenschutzrisiken im Kontext von HAS. Wir stellen das erste Rahmenwerk zur formellen Modellierung von Datenschutzgarantien in Hausautomationssystemen vor und demonstrieren die Anwendung an zwei konkreten Verfahren zur Generierung von Dummy-Verkehr. In einer qualitativen und quantitativen Studie der zwei Algorithmen zeigen wir, wie Datenschutzgarantien erreicht werden können und wie sie mit der Energieeffizienz von HAS zusammenhängen. Dies erlaubt Herstellern die Konzeption und Umsetzung von Hausautomationssystemen, welche die Privatsphäre der Nutzenden schützen und die eine freie Parametrisierung ermöglichen, um einen Kompromiss zwischen Datenschutz und Energieeffizienz zu erreichen

    Obfuscation and anonymization methods for locational privacy protection : a systematic literature review

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesThe mobile technology development combined with the business model of a majority of application companies is posing a potential risk to individuals’ privacy. Because the industry default practice is unrestricted data collection. Although, the data collection has virtuous usage in improve services and procedures; it also undermines user’s privacy. For that reason is crucial to learn what is the privacy protection mechanism state-of-art. Privacy protection can be pursued by passing new regulation and developing preserving mechanism. Understanding in what extent the current technology is capable to protect devices or systems is important to drive the advancements in the privacy preserving field, addressing the limits and challenges to deploy mechanism with a reasonable quality of Service-QoS level. This research aims to display and discuss the current privacy preserving schemes, its capabilities, limitations and challenges

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Privacy protection in location based services

    Get PDF
    This thesis takes a multidisciplinary approach to understanding the characteristics of Location Based Services (LBS) and the protection of location information in these transactions. This thesis reviews the state of the art and theoretical approaches in Regulations, Geographic Information Science, and Computer Science. Motivated by the importance of location privacy in the current age of mobile devices, this thesis argues that failure to ensure privacy protection under this context is a violation to human rights and poses a detriment to the freedom of users as individuals. Since location information has unique characteristics, existing methods for protecting other type of information are not suitable for geographical transactions. This thesis demonstrates methods that safeguard location information in location based services and that enable geospatial analysis. Through a taxonomy, the characteristics of LBS and privacy techniques are examined and contrasted. Moreover, mechanisms for privacy protection in LBS are presented and the resulting data is tested with different geospatial analysis tools to verify the possibility of conducting these analyses even with protected location information. By discussing the results and conclusions of these studies, this thesis provides an agenda for the understanding of obfuscated geospatial data usability and the feasibility to implement the proposed mechanisms in privacy concerning LBS, as well as for releasing crowdsourced geographic information to third-parties

    Completely Automated Public Physical test to tell Computers and Humans Apart: A usability study on mobile devices

    Get PDF
    A very common approach adopted to fight the increasing sophistication and dangerousness of malware and hacking is to introduce more complex authentication mechanisms. This approach, however, introduces additional cognitive burdens for users and lowers the whole authentication mechanism acceptability to the point of making it unusable. On the contrary, what is really needed to fight the onslaught of automated attacks to users data and privacy is to first tell human and computers apart and then distinguish among humans to guarantee correct authentication. Such an approach is capable of completely thwarting any automated attempt to achieve unwarranted access while it allows keeping simple the mechanism dedicated to recognizing the legitimate user. This kind of approach is behind the concept of Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA), yet CAPTCHA leverages cognitive capabilities, thus the increasing sophistication of computers calls for more and more difficult cognitive tasks that make them either very long to solve or very prone to false negatives. We argue that this problem can be overcome by substituting the cognitive component of CAPTCHA with a different property that programs cannot mimic: the physical nature. In past work we have introduced the Completely Automated Public Physical test to tell Computer and Humans Apart (CAPPCHA) as a way to enhance the PIN authentication method for mobile devices and we have provided a proof of concept implementation. Similarly to CAPTCHA, this mechanism can also be used to prevent automated programs from abusing online services. However, to evaluate the real efficacy of the proposed scheme, an extended empirical assessment of CAPPCHA is required as well as a comparison of CAPPCHA performance with the existing state of the art. To this aim, in this paper we carry out an extensive experimental study on both the performance and the usability of CAPPCHA involving a high number of physical users, and we provide comparisons of CAPPCHA with existing flavors of CAPTCHA
    • …
    corecore