219 research outputs found

    Factored Bandits

    Full text link
    We introduce the factored bandits model, which is a framework for learning with limited (bandit) feedback, where actions can be decomposed into a Cartesian product of atomic actions. Factored bandits incorporate rank-1 bandits as a special case, but significantly relax the assumptions on the form of the reward function. We provide an anytime algorithm for stochastic factored bandits and up to constants matching upper and lower regret bounds for the problem. Furthermore, we show that with a slight modification the proposed algorithm can be applied to utility based dueling bandits. We obtain an improvement in the additive terms of the regret bound compared to state of the art algorithms (the additive terms are dominating up to time horizons which are exponential in the number of arms)

    One Arrow, Two Kills: An Unified Framework for Achieving Optimal Regret Guarantees in Sleeping Bandits

    Get PDF
    We address the problem of \emph{`Internal Regret'} in \emph{Sleeping Bandits} in the fully adversarial setup, as well as draw connections between different existing notions of sleeping regrets in the multiarmed bandits (MAB) literature and consequently analyze the implications: Our first contribution is to propose the new notion of \emph{Internal Regret} for sleeping MAB. We then proposed an algorithm that yields sublinear regret in that measure, even for a completely adversarial sequence of losses and availabilities. We further show that a low sleeping internal regret always implies a low external regret, and as well as a low policy regret for iid sequence of losses. The main contribution of this work precisely lies in unifying different notions of existing regret in sleeping bandits and understand the implication of one to another. Finally, we also extend our results to the setting of \emph{Dueling Bandits} (DB)--a preference feedback variant of MAB, and proposed a reduction to MAB idea to design a low regret algorithm for sleeping dueling bandits with stochastic preferences and adversarial availabilities. The efficacy of our algorithms is justified through empirical evaluations

    Dueling Bandits with Adversarial Sleeping

    Get PDF
    We introduce the problem of sleeping dueling bandits with stochastic preferences and adversarial availabilities (DB-SPAA). In almost all dueling bandit applications, the decision space often changes over time; eg, retail store management, online shopping, restaurant recommendation, search engine optimization, etc. Surprisingly, this `sleeping aspect' of dueling bandits has never been studied in the literature. Like dueling bandits, the goal is to compete with the best arm by sequentially querying the preference feedback of item pairs. The non-triviality however results due to the non-stationary item spaces that allow any arbitrary subsets items to go unavailable every round. The goal is to find an optimal `no-regret' policy that can identify the best available item at each round, as opposed to the standard `fixed best-arm regret objective' of dueling bandits. We first derive an instance-specific lower bound for DB-SPAA Ω(i=1K1j=i+1KlogTΔ(i,j))\Omega( \sum_{i =1}^{K-1}\sum_{j=i+1}^K \frac{\log T}{\Delta(i,j)}), where KK is the number of items and Δ(i,j)\Delta(i,j) is the gap between items ii and jj. This indicates that the sleeping problem with preference feedback is inherently more difficult than that for classical multi-armed bandits (MAB). We then propose two algorithms, with near optimal regret guarantees. Our results are corroborated empirically
    corecore