243 research outputs found

    Calibrated Fairness in Bandits

    Get PDF
    We study fairness within the stochastic, \emph{multi-armed bandit} (MAB) decision making framework. We adapt the fairness framework of "treating similar individuals similarly" to this setting. Here, an `individual' corresponds to an arm and two arms are `similar' if they have a similar quality distribution. First, we adopt a {\em smoothness constraint} that if two arms have a similar quality distribution then the probability of selecting each arm should be similar. In addition, we define the {\em fairness regret}, which corresponds to the degree to which an algorithm is not calibrated, where perfect calibration requires that the probability of selecting an arm is equal to the probability with which the arm has the best quality realization. We show that a variation on Thompson sampling satisfies smooth fairness for total variation distance, and give an O~((kT)2/3)\tilde{O}((kT)^{2/3}) bound on fairness regret. This complements prior work, which protects an on-average better arm from being less favored. We also explain how to extend our algorithm to the dueling bandit setting.Comment: To be presented at the FAT-ML'17 worksho

    Factored Bandits

    Full text link
    We introduce the factored bandits model, which is a framework for learning with limited (bandit) feedback, where actions can be decomposed into a Cartesian product of atomic actions. Factored bandits incorporate rank-1 bandits as a special case, but significantly relax the assumptions on the form of the reward function. We provide an anytime algorithm for stochastic factored bandits and up to constants matching upper and lower regret bounds for the problem. Furthermore, we show that with a slight modification the proposed algorithm can be applied to utility based dueling bandits. We obtain an improvement in the additive terms of the regret bound compared to state of the art algorithms (the additive terms are dominating up to time horizons which are exponential in the number of arms)

    Tsallis-INF: An Optimal Algorithm for Stochastic and Adversarial Bandits

    Full text link
    We derive an algorithm that achieves the optimal (within constants) pseudo-regret in both adversarial and stochastic multi-armed bandits without prior knowledge of the regime and time horizon. The algorithm is based on online mirror descent (OMD) with Tsallis entropy regularization with power α=1/2\alpha=1/2 and reduced-variance loss estimators. More generally, we define an adversarial regime with a self-bounding constraint, which includes stochastic regime, stochastically constrained adversarial regime (Wei and Luo), and stochastic regime with adversarial corruptions (Lykouris et al.) as special cases, and show that the algorithm achieves logarithmic regret guarantee in this regime and all of its special cases simultaneously with the adversarial regret guarantee.} The algorithm also achieves adversarial and stochastic optimality in the utility-based dueling bandit setting. We provide empirical evaluation of the algorithm demonstrating that it significantly outperforms UCB1 and EXP3 in stochastic environments. We also provide examples of adversarial environments, where UCB1 and Thompson Sampling exhibit almost linear regret, whereas our algorithm suffers only logarithmic regret. To the best of our knowledge, this is the first example demonstrating vulnerability of Thompson Sampling in adversarial environments. Last, but not least, we present a general stochastic analysis and a general adversarial analysis of OMD algorithms with Tsallis entropy regularization for α[0,1]\alpha\in[0,1] and explain the reason why α=1/2\alpha=1/2 works best
    corecore