32 research outputs found

    Inferring, splicing, and the Stoic analysis of argument

    Get PDF

    Boundary Algebra: A Simple Notation for Boolean Algebra and the Truth Functors

    Get PDF
    Boundary algebra [BA] is a simpler notation for Spencer-Brown’s (1969) primary algebra [pa], the Boolean algebra 2, and the truth functors. The primary arithmetic [PA] consists of the atoms ‘()’ and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting the presence or absence of () into a PA formula yields a BA formula. The BA axioms are "()()=()" (A1), and "(()) [=?] may be written or erased at will” (A2). Repeated application of these axioms to a PA formula yields a member of B= {(),?} called its simplification. (a) has two intended interpretations: (a) ? a? (Boolean algebra 2), and (a) ? ~a (sentential logic). BA is self-dual: () ? 1 [dually 0] so that B is the carrier for 2, ab ? a?b [a?b], and (a)b [(a(b))] ? a=b, so that ?=() [()=?] follows trivially and B is a poset. The BA basis abc= bca (Dilworth 1938), a(ab)= a(b), and a()=() (Bricken 2002) facilitates clausal reasoning and proof by calculation. BA also simplifies normal forms and Quine’s (1982) truth value analysis. () ? true [false] yields boundary logic.G. Spencer Brown; boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; C.S. Peirce; existential graphs.

    (I Can’t Get No) Antisatisfaction

    Get PDF
    Substructural approaches to paradoxes have attracted much attention from the philosophical community in the last decade. In this paper we focus on two substructural logics, named ST and TS, along with two structural cousins, LP and K3. It is well known that LP and K3 are duals in the sense that an inference is valid in one logic just in case the contrapositive is valid in the other logic. As a consequence of this duality, theories based on either logic are tightly connected since many of the arguments for and objections against one theory reappear in the other theory in dual form. The target of the paper is making explicit in exactly what way, if any, ST and TS are dual to one another. The connection will allow us to gain a more fine-grained understanding of these logics and of the theories based on them. In particular, we will obtain new insights on two questions concerning ST which are being intensively discussed in the current literature: whether ST preserves classical logic and whether it is LP in sheep’s clothing. Explaining in what way ST and TS are duals requires comparing these logics at a metainferential level. We provide to this end a uniform proof theory to decide on valid metainferences for each of the four logics. This proof procedure allows us to show in a very simple way how different properties of inferences (unsatisfiability, supersatisfiability and antivalidity) that behave in very different ways for each logic can be captured in terms of the validity of a metainference

    Intensional Models for the Theory of Types

    Get PDF
    In this paper we define intensional models for the classical theory of types, thus arriving at an intensional type logic ITL. Intensional models generalize Henkin's general models and have a natural definition. As a class they do not validate the axiom of Extensionality. We give a cut-free sequent calculus for type theory and show completeness of this calculus with respect to the class of intensional models via a model existence theorem. After this we turn our attention to applications. Firstly, it is argued that, since ITL is truly intensional, it can be used to model ascriptions of propositional attitude without predicting logical omniscience. In order to illustrate this a small fragment of English is defined and provided with an ITL semantics. Secondly, it is shown that ITL models contain certain objects that can be identified with possible worlds. Essential elements of modal logic become available within classical type theory once the axiom of Extensionality is given up.Comment: 25 page

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    Deep Inference and Symmetry in Classical Proofs

    Get PDF
    In this thesis we see deductive systems for classical propositional and predicate logic which use deep inference, i.e. inference rules apply arbitrarily deep inside formulas, and a certain symmetry, which provides an involution on derivations. Like sequent systems, they have a cut rule which is admissible. Unlike sequent systems, they enjoy various new interesting properties. Not only the identity axiom, but also cut, weakening and even contraction are reducible to atomic form. This leads to inference rules that are local, meaning that the effort of applying them is bounded, and finitary, meaning that, given a conclusion, there is only a finite number of premises to choose from. The systems also enjoy new normal forms for derivations and, in the propositional case, a cut elimination procedure that is drastically simpler than the ones for sequent systems

    (I can’t get no) antisatisfaction

    Get PDF
    Substructural approaches to paradoxes have attracted much attention from the philosophical community in the last decade. In this paper we focus on two substructural logics, named ST and TS, along with two structural cousins, LP and K3. It is well known that LP and K3 are duals in the sense that an inference is valid in one logic just in case the contrapositive is valid in the other logic. As a consequence of this duality, theories based on either logic are tightly connected since many of the arguments for and objections against one theory reappear in the other theory in dual form. The target of the paper is making explicit in exactly what way, if any, ST and TS are dual to one another. The connection will allow us to gain a more fine-grained understanding of these logics and of the theories based on them. In particular, we will obtain new insights on two questions concerning ST which are being intensively discussed in the current literature: whether ST preserves classical logic and whether it is LP in sheep’s clothing. Explaining in what way ST and TS are duals requires comparing these logics at a metainferential level. We provide to this end a uniform proof theory to decide on valid metainferences for each of the four logics. This proof procedure allows us to show in a very simple way how different properties of inferences (unsatisfiability, supersatisfiability and antivalidity) that behave in very different ways for each logic can be captured in terms of the validity of a metainference

    Playing with truth

    Get PDF

    Stoic Sequent Logic and Proof Theory

    Get PDF
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. Much of Stoic logic appears surprisingly modern: a recursively formulated syntax with some truth-functional propositional operators; analogues to cut rules, axiom schemata and Gentzen’s negation-introduction rules; an implicit variable-sharing principle and deliberate rejection of Thinning and avoidance of paradoxes of implication. These latter features mark the system out as a relevance logic, where the absence of duals for its left and right introduction rules puts it in the vicinity of McCall’s connexive logic. Methodologically, the choice of meticulously formulated meta-logical rules in lieu of axiom and inference schemata absorbs some structural rules and results in an economical, precise and elegant system that values decidability over completeness
    corecore