848 research outputs found

    Tightness and duality of martingale transport on the Skorokhod space

    Full text link
    The martingale optimal transport aims to optimally transfer a probability measure to another along the class of martingales. This problem is mainly motivated by the robust superhedging of exotic derivatives in financial mathematics, which turns out to be the corresponding Kantorovich dual. In this paper we consider the continuous-time martingale transport on the Skorokhod space of cadlag paths. Similar to the classical setting of optimal transport, we introduce different dual problems and establish the corresponding dualities by a crucial use of the S-topology and the dynamic programming principle

    Arbitrage and Control Problems in Finance. Presentation.

    Get PDF
    The theory of asset pricing takes its roots in the Arrow-Debreu model (see,for instance, Debreu 1959, Chap. 7), the Black and Scholes (1973) formula,and the Cox and Ross (1976) linear pricing model. This theory and its link to arbitrage has been formalized in a general framework by Harrison and Kreps (1979), Harrison and Pliska (1981, 1983), and Du¢e and Huang (1986). In these models, security markets are assumed to be frictionless: securities can be sold short in unlimited amounts, the borrowing and lending rates are equal, and there is no transaction cost. The main result is that the price process of traded securities is arbitrage free if and only if there exists some equivalent probability measure that transforms it into a martingale, when normalized by the numeraire. Contingent claims can then be priced by taking the expected value of their (normalized) payo§ with respect to any equivalent martingale measure. If this value is unique, the claim is said to be priced by arbitrage and it can be perfectly hedged (i.e. duplicated) by dynamic trading. When the markets are dynamically complete, there is only one such a and any contingent claim is priced by arbitrage. The of each state of the world for this probability measure can be interpreted as the state price of the economy (the prices of $1 tomorrow in that state of the world) as well as the marginal utilities (for consumption in that state of the world) of rational agents maximizing their expected utility.arbitrage, control problem

    Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging

    Full text link
    We study option pricing and hedging with uncertainty about a Black-Scholes reference model which is dynamically recalibrated to the market price of a liquidly traded vanilla option. For dynamic trading in the underlying asset and this vanilla option, delta-vega hedging is asymptotically optimal in the limit for small uncertainty aversion. The corresponding indifference price corrections are determined by the disparity between the vegas, gammas, vannas, and volgas of the non-traded and the liquidly traded options.Comment: 44 pages; forthcoming in 'Finance and Stochastics

    Optimal Dynamic Portfolio with Mean-CVaR Criterion

    Full text link
    Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are popular risk measures from academic, industrial and regulatory perspectives. The problem of minimizing CVaR is theoretically known to be of Neyman-Pearson type binary solution. We add a constraint on expected return to investigate the Mean-CVaR portfolio selection problem in a dynamic setting: the investor is faced with a Markowitz type of risk reward problem at final horizon where variance as a measure of risk is replaced by CVaR. Based on the complete market assumption, we give an analytical solution in general. The novelty of our solution is that it is no longer Neyman-Pearson type where the final optimal portfolio takes only two values. Instead, in the case where the portfolio value is required to be bounded from above, the optimal solution takes three values; while in the case where there is no upper bound, the optimal investment portfolio does not exist, though a three-level portfolio still provides a sub-optimal solution

    Cone-Constrained Continuous-Time Markowitz Problems

    Full text link
    The Markowitz problem consists of finding in a financial market a self-financing trading strategy whose final wealth has maximal mean and minimal variance. We study this in continuous time in a general semimartingale model and under cone constraints: Trading strategies must take values in a (possibly random and time-dependent) closed cone. We first prove existence of a solution for convex constraints by showing that the space of constrained terminal gains, which is a space of stochastic integrals, is closed in L^2. Then we use stochastic control methods to describe the local structure of the optimal strategy, as follows. The value process of a naturally associated constrained linear-quadratic optimal control problem is decomposed into a sum with two opportunity processes L^{\pm} appearing as coefficients. The martingale optimality principle translates into a drift condition for the semimartingale characteristics of L^{\pm} or equivalently into a coupled system of backward stochastic differential equations for L^{\pm}. We show how this can be used to both characterise and construct optimal strategies. Our results explain and generalise all the results available in the literature so far. Moreover, we even obtain new sharp results in the unconstrained case.Comment: To appear in Annals of Applied Probabilit
    corecore