1,006 research outputs found

    Duality in Entanglement-Assisted Quantum Error Correction

    Get PDF
    The dual of an entanglement-assisted quantum error-correcting (EAQEC) code is defined from the orthogonal group of a simplified stabilizer group. From the Poisson summation formula, this duality leads to the MacWilliams identities and linear programming bounds for EAQEC codes. We establish a table of upper and lower bounds on the minimum distance of any maximal-entanglement EAQEC code with length up to 15 channel qubits.Comment: This paper is a compact version of arXiv:1010.550

    Entanglement-assisted quantum error-correcting codes over arbitrary finite fields

    Get PDF
    We prove that the known formulae for computing the optimal number of maximally entangled pairs required for entanglement-assisted quantum error-correcting codes (EAQECCs) over the binary field hold for codes over arbitrary finite fields as well. We also give a Gilbert-Varshamov bound for EAQECCs and constructions of EAQECCs coming from punctured self-orthogonal linear codes which are valid for any finite field.Supported by the Spanish Ministry of Economy/FEDER: grants MTM2015-65764-C3-1-P, MTM2015-65764-C3-2-P, MTM2015-69138-REDT and RYC-2016-20208 (AEI/FSE/UE), the University Jaume I: grant UJI-B2018-10, Spanish Junta de CyL: grant VA166G18, and JSPS Grant No. 17K06419

    Weak Decoupling Duality and Quantum Identification

    Full text link
    If a quantum system is subject to noise, it is possible to perform quantum error correction reversing the action of the noise if and only if no information about the system's quantum state leaks to the environment. In this article, we develop an analogous duality in the case that the environment approximately forgets the identity of the quantum state, a weaker condition satisfied by epsilon-randomizing maps and approximate unitary designs. Specifically, we show that the environment approximately forgets quantum states if and only if the original channel approximately preserves pairwise fidelities of pure inputs, an observation we call weak decoupling duality. Using this tool, we then go on to study the task of using the output of a channel to simulate restricted classes of measurements on a space of input states. The case of simulating measurements that test whether the input state is an arbitrary pure state is known as equality testing or quantum identification. An immediate consequence of weak decoupling duality is that the ability to perform quantum identification cannot be cloned. We furthermore establish that the optimal amortized rate at which quantum states can be identified through a noisy quantum channel is equal to the entanglement-assisted classical capacity of the channel, despite the fact that the task is quantum, not classical, and entanglement-assistance is not allowed. In particular, this rate is strictly positive for every non-constant quantum channel, including classical channels.Comment: 14 pages; v2 has some remarks added and inaccuracies corrected; v3 has new title, improved presentation and additional references; v4 is the final, accepted version (to appear in IEEE IT), title changed once more and numerous improvements made - the main one being that we can now show that nontrivial amortization is necessary in erasure channel

    A Minimax Converse for Quantum Channel Coding

    Full text link
    We prove a one-shot "minimax" converse bound for quantum channel coding assisted by positive partial transpose channels between sender and receiver. The bound is similar in spirit to the converse by Polyanskiy, Poor, and Verdu [IEEE Trans. Info. Theory 56, 2307-2359 (2010)] for classical channel coding, and also enjoys the saddle point property enabling the order of optimizations to be interchanged. Equivalently, the bound can be formulated as a semidefinite program satisfying strong duality. The convex nature of the bound implies channel symmetries can substantially simplify the optimization, enabling us to explicitly compute the finite blocklength behavior for several simple qubit channels. In particular, we find that finite blocklength converse statements for the classical erasure channel apply to the assisted quantum erasure channel, while bounds for the classical binary symmetric channel apply to both the assisted dephasing and depolarizing channels. This implies that these qubit channels inherit statements regarding the asymptotic limit of large blocklength, such as the strong converse or second-order converse rates, from their classical counterparts. Moreover, for the dephasing channel, the finite blocklength bounds are as tight as those for the classical binary symmetric channel, since coding for classical phase errors yields equivalently-performing unassisted quantum codes.Comment: merged with arXiv:1504.04617 version 1 ; see version
    corecore