232,141 research outputs found

    SimCrime: A Spatial Microsimulation Model for the Analysing of Crime in Leeds.

    Get PDF
    This Working Paper is a part of PhD thesis 'Modelling Crime: A Spatial Microsimulation Approach' which aims to investigate the potential of spatial microsimulation for modelling crime. This Working Paper presents SimCrime, a static spatial microsimulation model for crime in Leeds. It is designed to estimate the likelihood of being a victim of crime and crime rates at the small area level in Leeds and to answer what-if questions about the effects of changes in the demographic and socio-economic characteristics of the future population. The model is based on individual microdata. Specifically, SimCrime combines individual microdata from the British Crime Survey (BCS) for which location data is only at the scale of large areas, with census statistics for smaller areas to create synthetic microdata estimates for output areas ?(OAs) in Leeds using a simulated annealing method. The new microdata dataset includes all the attributes from the original datasets. This allows variables such as crime victimisation from the BCS to be directly estimated for OAs

    N-methyl-N-((1-methyl-5-(3-(1-(2-methylbenzyl)piperidin-4-yl)propoxy)-1H-indol-2-yl)methyl)prop-2-yn-1-amine, a new cholinesterase and monoamine oxidase dual inhibitor

    Get PDF
    On the basis of N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)-N-methylprop-2-yn-1-amine (II, ASS234) and QSAR predictions, in this work we have designed, synthesized, and evaluated a number of new indole derivatives from which we have identified N-methyl-N-((1-methyl-5-(3-(1-(2-methylbenzyl)piperidin-4-yl)propoxy)-1H-indol-2-yl)methyl)prop-2-yn-1-amine (2, MBA236) as a new cholinesterase and monoamine oxidase dual inhibitor.PostprintPostprintPeer reviewe

    Age Progression and Regression with Spatial Attention Modules

    Full text link
    Age progression and regression refers to aesthetically render-ing a given face image to present effects of face aging and rejuvenation, respectively. Although numerous studies have been conducted in this topic, there are two major problems: 1) multiple models are usually trained to simulate different age mappings, and 2) the photo-realism of generated face images is heavily influenced by the variation of training images in terms of pose, illumination, and background. To address these issues, in this paper, we propose a framework based on conditional Generative Adversarial Networks (cGANs) to achieve age progression and regression simultaneously. Particularly, since face aging and rejuvenation are largely different in terms of image translation patterns, we model these two processes using two separate generators, each dedicated to one age changing process. In addition, we exploit spatial attention mechanisms to limit image modifications to regions closely related to age changes, so that images with high visual fidelity could be synthesized for in-the-wild cases. Experiments on multiple datasets demonstrate the ability of our model in synthesizing lifelike face images at desired ages with personalized features well preserved, and keeping age-irrelevant regions unchanged
    • 

    corecore