17,988 research outputs found

    Coronary Artery Centerline Extraction in Cardiac CT Angiography Using a CNN-Based Orientation Classifier

    Full text link
    Coronary artery centerline extraction in cardiac CT angiography (CCTA) images is a prerequisite for evaluation of stenoses and atherosclerotic plaque. We propose an algorithm that extracts coronary artery centerlines in CCTA using a convolutional neural network (CNN). A 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN. Tracking is terminated when no direction can be identified with high certainty. The CNN was trained using 32 manually annotated centerlines in a training set consisting of 8 CCTA images provided in the MICCAI 2008 Coronary Artery Tracking Challenge (CAT08). Evaluation using 24 test images of the CAT08 challenge showed that extracted centerlines had an average overlap of 93.7% with 96 manually annotated reference centerlines. Extracted centerline points were highly accurate, with an average distance of 0.21 mm to reference centerline points. In a second test set consisting of 50 CCTA scans, 5,448 markers in the coronary arteries were used as seed points to extract single centerlines. This showed strong correspondence between extracted centerlines and manually placed markers. In a third test set containing 36 CCTA scans, fully automatic seeding and centerline extraction led to extraction of on average 92% of clinically relevant coronary artery segments. The proposed method is able to accurately and efficiently determine the direction and radius of coronary arteries. The method can be trained with limited training data, and once trained allows fast automatic or interactive extraction of coronary artery trees from CCTA images.Comment: Accepted in Medical Image Analysi

    Intima-Media Thickness: Setting a Standard for a Completely Automated Method of Ultrasound Measurement

    Get PDF
    The intima - media thickness (IMT) of the common carotid artery is a widely used clinical marker of severe cardiovascular diseases. IMT is usually manually measured on longitudinal B-Mode ultrasound images. Many computer-based techniques for IMT measurement have been proposed to overcome the limits of manual segmentation. Most of these, however, require a certain degree of user interaction. In this paper we describe a new completely automated layers extraction (CALEXia) technique for the segmentation and IMT measurement of carotid wall in ultrasound images. CALEXia is based on an integrated approach consisting of feature extraction, line fitting, and classification that enables the automated tracing of the carotid adventitial walls. IMT is then measured by relying on a fuzzy K-means classifier. We tested CALEXia on a database of 200 images. We compared CALEXia performances to those of a previously developed methodology that was based on signal analysis (CULEXsa). Three trained operators manually segmented the images and the average profiles were considered as the ground truth. The average error from CALEXia for lumen - intima (LI) and media - adventitia (MA) interface tracings were 1.46 ± 1.51 pixel (0.091 ± 0.093 mm) and 0.40 ± 0.87 pixel (0.025 ± 0.055 mm), respectively. The corresponding errors for CULEXsa were 0.55 ± 0.51 pixels (0.035 ± 0.032 mm) and 0.59 ± 0.46 pixels (0.037 ± 0.029 mm). The IMT measurement error was equal to 0.87 ± 0.56 pixel (0.054 ± 0.035 mm) for CALEXia and 0.12 ± 0.14 pixel (0.01 ± 0.01 mm) for CULEXsa. Thus, CALEXia showed limited performance in segmenting the LI interface, but outperformed CULEXsa in the MA interface and in the number of images correctly processed (10 for CALEXia and 16 for CULEXsa). Based on two complementary strategies, we anticipate fusing them for further IMT improvement

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Automated Glaucoma Detection Using Hybrid Feature Extraction in Retinal Fundus Images

    Get PDF
    Glaucoma is one of the most common causes of blindness. Robust mass screening may help to extend the symptom-free life for affected patients. To realize mass screening requires a cost-effective glaucoma detection method which integrates well with digital medical and administrative processes. To address these requirements, we propose a novel low cost automated glaucoma diagnosis system based on hybrid feature extraction from digital fundus images. The paper discusses a system for the automated identification of normal and glaucoma classes using higher order spectra (HOS), trace transform (TT), and discrete wavelet transform (DWT) features. The extracted features are fed to a support vector machine (SVM) classifier with linear, polynomial order 1, 2, 3 and radial basis function (RBF) in order to select the best kernel for automated decision making. In this work, the SVM classifier, with a polynomial order 2 kernel function, was able to identify glaucoma and normal images with an accuracy of 91.67%, and sensitivity and specificity of 90% and 93.33%, respectively. Furthermore, we propose a novel integrated index called Glaucoma Risk Index (GRI) which is composed from HOS, TT, and DWT features, to diagnose the unknown class using a single feature. We hope that this GRI will aid clinicians to make a faster glaucoma diagnosis during the mass screening of normal/glaucoma images

    Neuropathy Classification of Corneal Nerve Images Using Artificial Intelligence

    Get PDF
    Nerve variations in the human cornea have been associated with alterations in the neuropathy state of a patient suffering from chronic diseases. For some diseases, such as diabetes, detection of neuropathy prior to visible symptoms is important, whereas for others, such as multiple sclerosis, early prediction of disease worsening is crucial. As current methods fail to provide early diagnosis of neuropathy, in vivo corneal confocal microscopy enables very early insight into the nerve damage by illuminating and magnifying the human cornea. This non-invasive method captures a sequence of images from the corneal sub-basal nerve plexus. Current practices of manual nerve tracing and classification impede the advancement of medical research in this domain. Since corneal nerve analysis for neuropathy is in its initial stages, there is a dire need for process automation. To address this limitation, we seek to automate the two stages of this process: nerve segmentation and neuropathy classification of images. For nerve segmentation, we compare the performance of two existing solutions on multiple datasets to select the appropriate method and proceed to the classification stage. Consequently, we approach neuropathy classification of the images through artificial intelligence using Adaptive Neuro-Fuzzy Inference System, Support Vector Machines, NaĂŻve Bayes and k-nearest neighbors. We further compare the performance of machine learning classifiers with deep learning. We ascertained that nerve segmentation using convolutional neural networks provided a significant improvement in sensitivity and false negative rate by at least 5% over the state-of-the-art software. For classification, ANFIS yielded the best classification accuracy of 93.7% compared to other classifiers. Furthermore, for this problem, machine learning approaches performed better in terms of classification accuracy than deep learning

    U-Net and its variants for medical image segmentation: theory and applications

    Full text link
    U-net is an image segmentation technique developed primarily for medical image analysis that can precisely segment images using a scarce amount of training data. These traits provide U-net with a very high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in all major image modalities from CT scans and MRI to X-rays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. As the potential of U-net is still increasing, in this review we look at the various developments that have been made in the U-net architecture and provide observations on recent trends. We examine the various innovations that have been made in deep learning and discuss how these tools facilitate U-net. Furthermore, we look at image modalities and application areas where U-net has been applied.Comment: 42 pages, in IEEE Acces

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio
    • …
    corecore