3,195 research outputs found

    Ultra-Low Power Circuit Design for Miniaturized IoT Platform

    Full text link
    This thesis examines the ultra-low power circuit techniques for mm-scale Internet of Things (IoT) platforms. The IoT devices are known for their small form factors and limited battery capacity and lifespan. So, ultra-low power consumption of always-on blocks is required for the IoT devices that adopt aggressive duty-cycling for high power efficiency and long lifespan. Several problems need to be addressed regarding IoT device designs, such as ultra-low power circuit design techniques for sleep mode and energy-efficient and fast data rate transmission for active mode communication. Therefore, this thesis highlights the ultra-low power always-on systems, focusing on energy efficient optical transmission in order to miniaturize the IoT systems. First, this thesis presents a battery-less sub-nW micro-controller for an always-operating system implemented with a newly proposed logic family. Second, it proposes an always-operating sub-nW light-to-digital converter to measure instant light intensity and cumulative light exposure, which employs the characteristics of this proposed logic family. Third, it presents an ultra-low standby power optical wake-up receiver with ambient light canceling using dual-mode operation. Finally, an energy-efficient low power optical transmitter for an implantable IoT device is suggested. Implications for future research are also provided.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145862/1/imhotep_1.pd

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    A Novel Transparent UWB Antenna for Photovoltaic Solar Panel Integration and RF Energy Harvesting

    Get PDF
    A novel transparent ultra-wideband antenna for photovoltaic solar-panel integration and RF energy harvesting is proposed in this paper. Since the approval by the Federal Communications Committee (FCC) in 2002, much research has been undertaken on UWB technology, especially for wireless communications. However, in the last decade, UWB has also been proposed as a power harvester. In this paper, a transparent cone-top-tapered slot antenna covering the frequency range from 2.2 to 12.1 GHz is designed and fabricated to provide UWB communications whilst integrated onto solar panels as well as harvest electromagnetic waves from free space and convert them into electrical energy. The antenna when sandwiched between an a-Si solar panel and glass is able to demonstrate a quasi omni-directional pattern that is characteristic of a UWB. The antenna when connected to a 2.55-GHz rectifier is able to produce 18-mV dc in free space and 4.4-mV dc on glass for an input power of 10 dBm at a distance of 5 cm. Although the antenna presented in this paper is a UWB antenna, only an operating range of 2.49 to 2.58 GHz for power scavenging is possible due to the limitation of the narrowband rectifier used for the study

    Computational structures for application specific VLSI processors

    Get PDF

    Research Proposal for an Experiment to Search for the Decay {\mu} -> eee

    Full text link
    We propose an experiment (Mu3e) to search for the lepton flavour violating decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16 mu-decays, four orders of magnitude better than previous searches. This sensitivity is made possible by exploiting modern silicon pixel detectors providing high spatial resolution and hodoscopes using scintillating fibres and tiles providing precise timing information at high particle rates.Comment: Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron, 104 page

    Time-to-digital converters and histogram builders in SPAD arrays for pulsed-LiDAR

    Get PDF
    Light Detection and Ranging (LiDAR) is a 3D imaging technique widely used in many applications such as augmented reality, automotive, machine vision, spacecraft navigation and landing. Pulsed-LiDAR is one of the most diffused LiDAR techniques which relies on the measurement of the round-trip travel time of an optical pulse back-scattered from a distant target. Besides the light source and the detector, Time-to-Digital Converters (TDCs) are fundamental components in pulsed-LiDAR systems, since they allow to measure the back-scattered photon arrival times and their performance directly impact on LiDAR system requirements (i.e., range, precision, and measurements rate). In this work, we present a review of recent TDC architectures suitable to be integrated in SPAD-based CMOS arrays and a review of data processing solutions to derive the TOF information. Furthermore, main TDC parameters and processing techniques are described and analyzed considering pulsed-LiDAR requirements

    Direct Time of Flight Single Photon Imaging

    Get PDF

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    Low-profile antenna systems for the Next-Generation Internet of Things applications

    Get PDF
    corecore